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Abstract

We propose a distributed regression algorithm with the capability of automatically calibrating its parameters during its on-
line functioning. The estimation procedure corresponds to a Regularization Network, i.e., the structural form of the estimator
is a linear combination of basis functions which coefficients are computed by solving a linear system. The automatic tuning
strategy instead constructs and then exploits opportune bounds on the distance between the distributed estimation results and the
unknown centralized optimal estimate that would be computed processing the whole dataset at once. By numerical simulations
we show how the proposed procedure allows the sensor networks to effectively self-tune the parameters of the distributed
regression scheme by simple consensus strategies.

Index Terms
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I. INTRODUCTION

Applications like surveillance, monitoring, tracking and sensing, benefit of the distributed paradigm, where unmanned agents
perform auxiliary and automatic operations. But to broaden the applicability of distributed paradigms, and to increase their
robustness with respect to human error, algorithms should be self-configuring and self-tuning; these are indeed intermediate
steps for implementing self-organizing and truly smart sensors and actuators networks.

Towards this vision we consider a specific class of distributed estimation strategies, more specifically nonparametric
regression algorithms. Our interests in contributing to this field is indeed driven by some practical considerations, that
make us believe in their technological possibilities: i) nonparametric strategies may be statistically more effective than
parametric ones (e.g., identification of linear systems using Akaike Information Criterion plus Prediction Error Methods [1]);
ii) nonparametric approaches may be consistent where parametric approaches fail to be [2], [3]; iii) nonparametric methods
usually require the tuning of very few parameters, and this allows the implementation of fast calibration strategies [4]. We
moreover specifically consider scenarios where agents have limited communication bandwidth, so that representations of the
estimated quantities must be kept small.

Literature review: endowing nonparametric distributed estimators with self- and online-calibration capabilities is com-
plicated by the fact that the regularization parameters (γ in the following Equation (5)), typical of nonparametric strategies,
combine with global quantities that are generally unknown to the single agents, such as the total number of measurements
available in the whole network.

Up to now, and to the best of our knowledge, the problem of how to address this lack of information, and thus of
how to tune regularization parameters of distributed nonparametric estimators in a online fashion, has not been treated. We
recognize several implementations of ad-hoc distributed self-calibration / self-diagnosis strategies, e.g., [5], [6], [7], [8], [9],
and literature on the calibration of centralized nonparametric estimators, e.g., [10, Chap. 5], [11, Chap. 7], but for distributed
settings the usual approach is to assume the regularization parameter (or the parameters governing the sparsification rules)
to be fixed and computed off-line [12], [13], [14], [15].

Statement of contributions: there are then two ways to overcome the lack of information on global quantities like the
number of measurements in the network: either distributedly estimate this information, or bypass it and exploit some other
structural property of the distributed nonparametric regression framework.

Here we consider the second approach, and devise on-line tuning procedures that are based on opportune Euclidean
distances concepts. More specifically, we consider opportune a-posteriori probabilistic bounds on the distance between the
outputs of the distributed regression strategy and the centralized optimal one. We notice that the proposed strategies do not
follow iterative minimization procedures, but rather compare in parallel a set of different parameters and then choose the
optimal one.

Organization of the manuscript: Sec. II describes the considered regression framework, while Secs. III and IV describe
respectively a centralized nonparametric estimator and its distributed version. Secs. V-A and V-B introduce then the distributed
procedures for the calibration of the parameters of the regression strategy. We conclude with numerical examples in Sec. VI
and with some conclusions and indications of future works in Sec. VII. To improve the readability of the paper, the proofs
have been collected in the appendix.
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Notice that, to the best of our knowledge, strategies for the automatic tuning of the parameters of distributed nonparametric
regression algorithms have never presented before. We are thus not able to offer comparative results with some other literature
works.

II. REGRESSION FRAMEWORK

Let fµ : X → R denote an unknown function defined on the compact X ⊂ Rd. For brevity, and w.l.o.g. (the same derivations
could be made by letting the sensors collect more information), assume that there are S sensors, each collecting a single
noisy measurement yi, i.e.,

yi = fµ (xi) + νi, i = 1, . . . , S (1)

with νi white noise and i the sensor index. We assume that each input location xi is known only to the i-th sensor and that
it is independently drawn from a probability measure µ known to all the sensors.

Notice that hereafter we will use the following notation: • fµ is the unknown function that has to be estimated; • f is a
generic function; • fc is a centralized estimate of fµ; • fd is a distributed estimate of fµ.

III. CENTRALIZED REGRESSION

Given the data set {xi, yi}Si=1, one of the most used approaches to estimate fµ relies upon the Tikhonov regularization
theory [16], [17]. The hypothesis space is typically given by a reproducing kernel Hilbert space (RKHS) defined by a
Mercer Kernel K : X × X → R [18], [19], [20] that is spanned by the eigenfunctions1 φe of the positive integral operator∫

X
K (x, x′) g (x′) dµ (x′) (2)

where the corresponding eigenvalues λe are s.t. λ1 ≥ λ2 ≥ . . . ≥ 0. Under mild assumptions (see, e.g., [21]), the hypothesis
space is given by the Hilbert space

HK :=
{
g ∈ L2 (µ) s.t. g =

∑∞
e=1 αeφe

with {αe} s.t.
∑∞
e=1

α2
e

λe
< +∞

}
.

(3)

Letting g1 =
∑+∞
e=1 αeφe and g2 =

∑+∞
e=1 βeφe, this implies that the inner product in HK is

〈g1, g2〉K :=

+∞∑
e=1

αeβe
λe

(4)

with the λe’s the eigenvalues of the kernel K.
To define the estimator of fµ given the dataset {(xi, yi)}i=1,...,S , a commonly used cost function is

Q (f) :=

S∑
i=1

(
yi − f (xi)

)2
+ γ ‖f‖2K (5)

where γ is the so called regularization parameter that trades off empirical evidence and smoothness information on fµ.
Assume w.l.o.g. γ to be known (cf. the discussion at the beginning of Sec. V). It is known that the optimal estimate

fc := arg min
f∈HK

Q (f) (6)

admits the structure of a Regularization Network, see [19], being the sum of S basis functions with expansion coefficients
obtainable by inverting a system of linear equations.

IV. DISTRIBUTED REGRESSION

A potential strategy for computing fc over networks is to route all the information to a specific unit, and let that unit perform
the computations. Since this requires the processing unit to perform O

(
S3
)

operations and to store all the xi’s, generally
this strategy is impractical in distributed scenarios, where agents may have both limited computational and communication
resources.

We thus aim at deriving an alternative approach, more suitable for distributed settings. To this aim we consider the
following roadmap:
• rewrite the optimization problem (6) in an alternative but equivalent way, by exploiting the structure of HK ;
• change, thanks to Principal Components Analysis-like concepts, the hypothesis space from HK to an approximated

one;
• derive the distributed estimator as an approximated version of the centralized one.

1For numerical computation of eigenvalues and eigenfunctions see for example [10, Chap. 4.3.2].



A. Rewriting optimization problem (6)

Let R∞ be the space of vectors with an infinite number of real scalar components. Introducing the map

T : HK → R∞ T

[
+∞∑
e=1

aeφe(·)

]
= [a1, a2 . . .] (7)

i.e., the map associating to a generic function f(·) =
∑+∞
e=1 aeφe(·) in HK the sequence [a1, a2 . . .] of its eigenfunctions

weights, it is possible to rewrite the estimand fµ as the novel estimand bµ = T [fµ]. Of course bµ and fµ are equivalent.
Letting moreover

Ci := [φ1 (xi) φ2 (xi) . . .] , (8)

it is possible to rewrite the measurement model (1) as

yi = Cibµ + νi, i = 1, . . . , S, (9)

and the cost function (5) as

Q (b) :=

S∑
i=1

(yi − Cib)2 + γ ‖b‖2K . (10)

The optimal estimate bc := argminb∈R∞ Q (b) of the estimand bµ is thus (see also [4])

bc =

(
diag

(
γ

λe

)
+

S∑
i=1

CTi Ci

)−1( S∑
i=1

CTi yi

)
(11)

with diag (αe) indicating the matrix with diagonal elements given by α1, α2, . . ..

B. Changing the hypothesis space

The optimal estimate bc in (11) is infinite dimensional, and thus numerically intractable. To obtain a numerically tractable
estimator, we consider the most natural finite-dimensional alternative of HK , i.e., the subspace HEK generated by the first
E eigenfunctions φe, i.e.,

HEK :=
{
g ∈ L2 (µ) s.t. g =

∑E
e=1 αeφe

with [α1, . . . , αE ]
T ∈ RE

}
.

(12)

Substituting HK with HEK is then motivated by the presence of the penalty term ‖·‖2K in (5): from Bayesian viewpoints, HEK
represents the subspace that, before seeing the data, captures the biggest part of the signal variance among all the subspaces
of dimension E [22], [10], in accordance with the Rayleigh’s principle which underlies Principal Component Analysis [23].

C. Deriving the distributed estimator

Given the change from the hypothesis space HK to HEK , consider also the change from Ci in (8) to

CEi = CE (xi) := [φ1 (xi) , · · · , φE (xi) , 0, 0, . . .] , (13)

and from the cost function (10) to

QE (b) :=

S∑
i=1

(
yi − CEi b

)2
+ γ ‖b‖2K . (14)

In this case the optimal estimate of bµ using HEK as hypothesis space is then given by (see also [4])

br := arg min
b∈HEK

Q (b) = arg min
b∈HEK

QE (b)

=

(
1

S
diag

(
γ

λe

)
+

1

S

S∑
i=1

(
CEi
)T
CEi

)−1(
1

S

S∑
i=1

(
CEi
)T
yi

) (15)

Thus, if sensors know the number of measurements S and the regularization parameter γ, then br can be distributedly
computed through two parallel average consensus algorithms: one on

(
CEi
)T
CEi and one on

(
CEi
)T
yi, plus multiplications

and inversions of E × E matrices and E-dimensional vectors.



But even if sensors know the number of measurements S and the regularization parameter γ, as noticed in [24],
the distributed implementation of (15) may still be problematic since it requires O

(
E2
)
-communication and O

(
E3
)
-

computational costs, i.e., to exchange an amount of information that scales with the square of E, potentially too high. To
this aim it is possible to consider that

1

S

S∑
i=1

(
CEi
)T
CEi ≈ Eµ

[(
CEi
)T
CEi

]
= diag (I, 0) (16)

where I is E×E-dimensional, and 0 is infinite dimensional. This equivalence is guaranteed by the fact that for 1 ≤ m,n ≤ E[
1

S

S∑
i=1

(
CEi
)T
CEi

]
mn

=
1

S

S∑
i=1

φm (xi)φn (xi) (17)

and, that, due to the orthogonality of the eigenfunctions of the kernel K in L2 (µ) and the fact that the xi’s are i.i.d. and
extracted from µ,

1

S

S∑
i=1

φm (xi)φn (xi)
S→+∞−−−−−→

∫
X
φi (x)φj (x) dµ (x) = δij .

This means that br can be approximated with

bd := diag

(
λe

γ/S + λe

)(
1

S

S∑
i=1

(
CEi
)T
yi

)
, (18)

an estimator that is particularly suitable for distributed estimation purposes since it does neither require sensors to exchange
information on their input locations xi (i.e., the CEi ) nor to compute matrix inversions; it only requires an average consensus
on the E-dimensional vectors

(
CEi
)T
yi.

V. AUTOTUNING PROCEDURES

Consider estimator bd in (18). This estimator is parametrized in the number of eigenfunctions E, the regularization parameter
γ, and the total number of measurements in the network S. E drives the computational and communication requirements of
the distributed strategy, but also the accuracy of the final estimate (as noticed in Sec. IV-B. The ratio γ/S, instead, dictates
how much the empirical evidence of the final solution should be traded off with its smoothness.

In practical situations, both E and γ/S should be chosen a-posteriori, i.e., after that sensors have collected their yi. The
aim of this paper is then the following: considering S and E as unknown (γ can instead w.l.o.g. be considered known, or
arbitrarily be set to 1), develop in-line strategies so that sensors will find a guess Sg for S and for E maximizing in some
sense the performance of bd.

In other words we highlight this parametric dependency of bd on Sg and E by writing

bd = bd (Sg, E) ,

and thus propose a distributed in-line self-calibration technique that allows the sensors to opportunely select E and Sg
assuming that the yi’s are locally available. The details of this strategy are offered in the following sections, and are based
on the following mild assumption:

Assumption 1 S ∈ [Smin, Smax] and sensors have knowledge about Smin and Smax.

Remark 2 Even if γ and S are known, because of the additional noise coming from the approximation I ≈
1
S

∑S
i=1

(
CEi
)T
CEi , it can be shown that in general, for any fixed E, implementing bd with the exact S does not maximize

the predictive capabilities of bd. So, even if S is actually known, one may want to find on-line that Sg that maximizes the
statistical performance of bd.

A. Calibration of the Regularization Parameter

Assume for now E to be fixed, and write bd (Sg) instead of bd (Sg, E). Despite the fact that, for any finite number of
measurements, it may happen that an opportunely tuned bd (Sg) has better predictive capabilities of the centralized optimal
estimate bc, usually bc has bigger generalization capabilities of bd (Sg) for any Sg ∈ R+. It is then meaningful to consider
‖bd (Sg)− bc‖2 as a performance indicator, and try to tune Sg seeking to minimize this distance.



Importantly, in actual distributed estimation scenarios it is impossible to compute

S∗g := arg min
Sg∈R+

‖bd (Sg)− bc‖2 . (19)

since bc is unknown. It is thus necessary to proceed finding appropriate bounds for ‖bd (Sg)− bc‖2 that depend on Sg , and
then find S∗g minimizing these bounds. The first step is given by the following proposition, that bounds ‖bd (Sg)− bc‖2 with
terms that can then be computed by agents independently. (The numerical validity of these bounds is analyzed in Sec. VI.)

Proposition 3 Let
C
\E
i := [0, . . . , 0, φE+1 (xi) , φE+2 (xi) , . . .] (20)

γa := sup
x∈X

∥∥∥∥diag(λeγ
)(

C\E (x)
)T∥∥∥∥

2

(21)

γb := sup
x∈X

∥∥∥∥diag(λeγ
)(

C\E (x)
)T

CE (x)

∥∥∥∥
2

(22)

Vr :=

(
1

S
diag

(
γ

λe

)
+

1

S

S∑
i=1

(
CEi
)T
CEi

)−1
(23)

Vd (Sg) :=

(
1

Sg
diag

(
γ

λe

)
+ I

)−1
(24)

UC := I − 1

S

S∑
i=1

(
CEi
)T
CEi (25)

US (Sg) :=

(
1

Sg
− 1

S

)
diag

(
γ

λe

)
. (26)

Then
‖bd (Sg)− br‖2 ≤ ‖VrUS (Sg) bd (Sg)‖2 + ‖VrUCbd (Sg)‖2 (27)

and
‖bd (Sg)− bc‖2 ≤ (γbSmax + 1) ‖bd (Sg)− br‖2

+
∑S
i=1 γa

∥∥yi − CEi bd (Sg)∥∥2 (28)

The terms involved in Prop. 3 have the following interpretations:
• C

\E
i is the part of the transformation expressed in (9) corresponding to the discarded eigenfunctions;

• γa and γb respectively bound how much the residuals yi − CEi bd (Sg) and bd (Sg) − br will influence the overall
approximation error bd (Sg)− bc;

• Vr is s.t. 1
SV
−1
r is an approximation of the true covariance of the set of measurements {yi}. More precisely, 1

SV
−1
r

would be the actual covariance if λE+1 = λE+2 = . . . = 0. The smaller these eigenvalues are, the better 1
SV
−1
r is an

approximation of the actual covariance;
• Vd (Sg) corresponds to an opportune approximation of Vr;
• UC corresponds to the approximation error encountered replacing 1

S

∑S
i=1

(
CEi
)T
CEi with Eµ

[(
CEi
)T
CEi

]
;

• US (Sg) modulates how the error on the regularization parameter affect the regularization properties of the proposed
distributed estimator.

The usefulness of Prop. 3 is that it is possible to build on top of it to construct the following bound for ‖bd (Sg)− bc‖2:

B (Sg) := (γbSmax + 1)
(
‖VrUS (Sg) bd (Sg)‖2 +
+ ‖VrUCbd (Sg)‖2

)
+

+
∑S
i=1 γa

∥∥yi − CEi bd (Sg)∥∥2 . (29)

One would then want to optimize on-line the unknown parameter Sg through

S∗g := arg min
Sg∈R+

B (Sg) ; (30)

nonetheless B (Sg) cannot be directly used for computing Sg since the quantities Vr, US (Sg), UC and S are unknown to
the various sensors.



To cope with this lack of information we propose thus to:
1) majorize U∗S (Sg) with U∗S (Sg), defined as

U∗S (Sg) := max

(∣∣∣∣ 1Sg − 1

Smax

∣∣∣∣ , ∣∣∣∣ 1Sg − 1

Smin

∣∣∣∣) · diag( γ

λe

)
(31)

and exploiting Assumption 1. Indeed it is immediate to check that

U∗S (Sg) ≥ US (Sg) ∀Sg ∈ R+

where the inequality is in a matricial positive definite sense.
2) majorize Vr and UC with quantities that are generated locally by each sensor i as follows: a) locally simulate a particular

scenario of the network by locally generating Smin independent virtual input locations xi,j by means of density µ, i.e.,
each i generates

xi,j ∼ µ where j = 1, . . . , Smin . (32)

b) then each i locally computes
CEi,j := [φ1 (xi,j) , . . . , φE (xi,j)] ,

V ∗r,i :=

 1

Smax
diag

(
γ

λe

)
+

1

Smax

Smin∑
j=1

(
CEi,j

)T
CEi,j

−1 (33)

U∗C,i :=

I − 1

Smin

Smin∑
j=1

(
CEi,j

)T
CEi,j

 , (34)

i.e., from probabilistic viewpoints, generate V ∗r,i and U∗C,i as pessimistic but informative versions of the true and unknown
Vr and UC .

By means of the previous scheme, optimization of Sg is now then possible through solving

S∗g := arg min
Sg∈R+

B∗ (Sg) (35)

where

B∗ (Sg) := (γbSmax + 1) · 1
S

S∑
i=1

(∥∥V ∗r,iU∗S (Sg) bd (Sg)∥∥2
+
∥∥V ∗r,iU∗C,ibd (Sg)∥∥2)

+(γaSmax) ·
1

S

S∑
i=1

∥∥yi − CEi bd (Sg)∥∥2 .
(36)

Intuitively, thus, agents try to minimize a pessimistic estimate B∗ (Sg) of B (Sg) instead of B (Sg) itself. The complete
algorithm is then reported in Alg. 1, solving problem (36) by gridding, i.e., selecting the best Sg from a set of candidates
S
(1)
g , . . . , S

(P )
g .

B. Calibration of the Number of Eigenfunctions

The maximum admissible value for E is upper bounded by computational complexity and transmission capability constraints.
Assuming E to be this maximum value, the usage of a naïve strategy like E = E could lead to communicate more than
necessary. In the following Alg. 2 we offer a practical and general guideline for the choice of E exploiting pessimistic
bounds on the approximation error ‖bc − br‖1.

From a practical point of view, Alg. 2 returns a number E assuring the operator that the normalized approximation error
‖bc−br‖2
‖fµ‖2

is smaller than a certain threshold. The algorithm is derived from the consideration that inequality (56) in the proof
of Prop. 3 implies

‖bc − br‖2 ≤ γa
S∑
i=1

‖yi − Cibr‖2 (41)

and the consideration that, in general, residuals ‖yi − Cibr‖2 are far smaller than 3 times the standard deviation of the
measurement noise. We notice that this choice is arbitrary and relies on the assumption that the estimation result will have a
certain minimum level of generalization capabilities. Pessimistic considerations can lead to increase the number of standard
deviations, with the limit case of no approximation capabilities of br corresponding to set br = 0 in (41) and to substitute
3σ with maxi ‖yi‖2 in (40).



Algorithm 1 Distributed calibration of the regularization parameter

Off-line work: Sensors are given Smin, Smax, µ, E, γa, γb, a set of R different candidates S(1)
g , . . . , S

(P )
g and relative

matrices U∗S
(
S
(1)
g

)
, . . . , U∗S

(
S
(P )
g

)
. In addition, each sensor i locally generates Smin independent virtual input locations

xi,j , j = 1, . . . , Smin by means of density µ, from which it computes CEi,j , V
∗
r,i and U∗C,i.

On-line and distributed work:
1: (distributed step) sensors distributedly compute, by means of average consensus protocols, the E-dimensional vector

Z :=
1

S

S∑
i=1

(
CEi
)T
yi (37)

2: (local step) each sensor i computes the P versions of the estimator (18), namely bd

(
S
(p)
g

)
= Vd

(
S
(p)
g

)
Z , for p =

1, . . . , P .
3: (local step) each sensor i computes the local P auxiliary scalars, for p = 1, . . . , P

B∗i
(
S
(p)
g

)
:= (γbSmax + 1)

∥∥∥V ∗r,iU∗S (S(p)
g

)
bd

(
S(p)
g

)∥∥∥
2

+(γbSmax + 1)
∥∥∥V ∗r,iU∗C,ibd (S(p)

g

)∥∥∥
2

+(γaSmax) ·
∥∥∥yi − CEi bd (S(p)

g

)∥∥∥
2

4: (distributed step) sensors distributedly compute, by means of average consensus protocols, the P scalars, for p = 1, . . . , P

B∗
(
S(p)
g

)
:=

1

S

S∑
i=1

B∗i
(
S(p)
g

)
(38)

5: (local step) each sensor i computes S∗g = S
(p∗)
g where

(p∗) = argmin
(p)
B∗
(
S(p)
g

)
(39)

Algorithm 2 Calibration of the number of eigenfunctions
1: assume the knowledge of a lower bound on the energy of the unknown signal fµ, indicated with min ‖fµ‖2
2: choose a threshold δ for the maximal tolerable error ‖bc−br‖2‖fµ‖2
3: compute the minimal value of E s.t.

3σSmaxγa (E)

min ‖fµ‖2
≤ δ (40)

where we highlighted the dependence of γa on E.

We notice that, substituting min ‖fµ‖2 with maxi ‖yi‖2 in (40), algorithm 2 can be used in a-posteriori scenarios, where
sensors decide E by means of a max consensus on ‖yi‖2 before computing (37). We also notice that high uncertainties on
S lead to overestimations of E because of the approximation Smax.



VI. NUMERICAL EXAMPLES

In this section we show the effectiveness of the proposed strategies through some numerical examples. We consider fµ :
X = [0, 1]→ R to be given by

fµ (x) =

100∑
n=1

αn sin (ωnx) (42)

with αn ∼ N (0, 0.01) i.i.d., ωn ∼ U [0, 25] i.i.d., µ ∼ U [0, 1] and a measurement noise standard deviation σ = 0.75 s.t.,

on average, SNR :=
var (fµ)

σ2
≈ 2.5. Moreover we consider the Gaussian kernel

K (x, x′) = exp

(
− (x− x′)2

0.02

)
(43)

with the estimators (11) and (18) defined by γ = 0.3.
To show the effectiveness of the estimation strategy (18), a randomly generated realization of fµ is sampled by S = 100

sensors and estimated using E = 20 eigenfunctions2 under two different uncertainty levels on S, namely case (a), where
Smin = 90 and Smax = 110, and case (b), where Smin = 20 and Smax = 2000. In Fig. 1 we plot then the actual realization, its
estimates reconstructed from bc, and b(·)d

(
S∗g
)

with S∗g chosen by Alg. 1 among 20 candidates logarithmically spaced inside
[1, Smax], and (·) = (a) or (b) accordingly to the level of uncertainty on S (dotted and dashed-dotted lines, respectively).
We claim an overall insensitivity of bd on the uncertainty on S considering that both T−1

[
b
(a)
d

]
and T−1

[
b
(b)
d

]
are close to

0 0.2 0.4 0.6 0.8 1

−2

0

2

x

yi
fµ
T−1 [bc]

T−1
[
b
(a)
d

]

T−1
[
b
(b)
d

]

Fig. 1. Effectiveness of the estimation strategy (18) on a randomly generated fµ, for various levels of uncertainty on S.

the centralized estimate T−1 [bc] (where T−1, given (7), corresponds to the map from a sequence of eigenfunctions weights
to the corresponding function in HK).

Despite this valuable property, bounds B∗ are good indicators about the actual distance
∥∥bd (S∗g)− bc∥∥2 only for the case

(a) (low uncertainty on S), as Fig. 2 indicates. In this figure we generate 200 independent realizations of fµ, then estimate
each fµ as before, and finally plot the actual distances

∥∥∥b(·)d − bc∥∥∥
2

versus the obtained bounds B∗. It is immediate to see
that the bound provides, for the case (b), meaningless information on the actual distance. This lack of meaningfulness is
caused by the presence in the bound of the multiplicative factor Smax. This implies that in general the accuracy of the bound
is tightly connected with the accuracy of the knowledge on S.

0 0.25 0.5 0.75
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Fig. 2. Actual distances
∥∥bd (S∗g)− bc∥∥2 vs. bounds values B∗ for different levels of uncertainty on S.

2This particular choice will be motivated later.



For sake of completeness, we show in Fig. 3 the values of the bounds B∗
(
S
(p)
g

)
defined in (38) associated to the

experiment of Fig. 1, and the relative distances
∥∥∥bd (S(p)

g

)
− bc

∥∥∥
2
. It is possible to see how the qualitative behavior of curve

B∗
(
S
(p)
g

)
is similar to the one of curve

∥∥∥bd (S(p)
g

)
− bc

∥∥∥
2
.
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↓ magnification: 500 times ↓
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Fig. 3. Values of the bounds B∗
(
S
(p)
g

)
under different uncertainty levels on S for the experiment of Fig. (1) (solid lines), and relative values of the

distances
∥∥∥bd (S(p)

g

)
− bc

∥∥∥
2

(dashed lines). Circles on the solid lines indicate the optimal values B∗. The dashed line in panel (b) has been magnified
300 times.

We then aim to check if it is better to use Alg. 1 or to try to directly try to estimate S. We thus compare the estimation
performance obtainable with three different naïve strategies for the choice of Sg , namely S∗g = Smin, S∗g = Smax, S∗g =

Save :=
Smin + Smax

2
. Considering panels (a) of Figs. 2 and 3 it is possible to infer that:

• in case of low uncertainty levels, Alg. 1 will not lead to big improvements w.r.t. to naïve strategies, but will give
accurate descriptions of the actual distance with the centralized estimate;

• in case of high uncertainty levels, Alg. 1 will not give accurate descriptions of the actual distance with the centralized
estimate but its usage will lead to improvements w.r.t. to naïve strategies.

To numerically prove the last statement, we consider the previously generated 200 independent realizations of fµ and the
case Smin = 20 and Smax = 2000. We then plot in Fig. 4 the 100 points(

‖bd (Smin)− bc‖2 ,
∥∥bd (S∗g)− bc∥∥2) (44)(

‖bd (Save)− bc‖2 ,
∥∥bd (S∗g)− bc∥∥2) (45)(

‖bd (Smax)− bc‖2 ,
∥∥bd (S∗g)− bc∥∥2) . (46)

in panels (a), (b) and (c) respectively. Since these points generally lie below the bisector of the first quadrant, the distributed
estimators bd with Sg chosen with Alg. 1 are generally closer to the centralized estimates bc than the ones with naïvely
chosen Sgs. Finally, to check the level of suboptimality of the results of Alg. 1, in panel (d) of the same figure we plot also
the points (∥∥bd (Sora

g

)
− bc

∥∥
2
,
∥∥bd (S∗g)− bc∥∥2) (47)

where Sora
g are the optimal Sgs obtained exactly solving problem (19) (i.e., by using an oracle). Since the distance of these

points from the bisector is small, we can conclude that the level of suboptimality of Alg. 1 is also small.
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Fig. 4. Scatter plots to test the effectiveness of Alg. 1. Left-up panel: scatter plots of the points defined in (44). Right-up panel: points defined in (45).
Left-down panel: points defined in (46). Right-down panel: points defined in (47). Smin = 20 and Smax = 2000.
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Fig. 5. Values of E returned by the on-line version of Alg. 2 fed with various choices of the threshold δ and applied to the experiment of Fig. 1 with
Smin = 20 and Smax = 2000.

To test the effectiveness of Alg. 2 and motivate the previous choice E = 20, we plot in Fig. 5 the values of E returned
by the on-line version of Alg. 2, applied to the experiment of Fig. 1 with Smin = 20 and Smax = 2000, and fed with
various values for the threshold δ. We notice that the exponential decay of the bound is inherited by the exponential decay
of eigenvalues λe associated to the Gaussian kernel. Different kernels would lead to different outputs. Notice that if we let
δ = 10−3 we obtain E = 20 and thus motivate the previous choice.

VII. CONCLUSIONS

In this paper we analyze how to endow distributed nonparametric regression strategies with self-tuning capabilities. The
considered estimator is characterized by two parameters: the first one, the regularization parameter, that trades off the
empirical evidence and the smoothness information on the true function. The second one, the number of eigenfunctions
to be used, determines the size of the hypothesis space. Here we constructed a novel distributed and on-line parameters
self-calibration strategy exploiting opportune a-posteriori probabilistic bounds on the distance between the parametrized
distributed estimator and the unknown estimate that would be computed in a centralized scenario.

We have also analyzed the performances of this distributed parameters calibration strategy through numerical experiments,
and shown that under highly uncertain topological knowledge, the strategy leads to improvements with respect to naïve
calibration strategies. On the contrary, in case of accurate knowledge on the number of sensors in the network, the computed
probabilistic bounds constitute an accurate description of the distance between the distributed regression strategy and an
optimal centralized one.

As examples of future works, we notice that the proposed strategy can be ameliorated exploiting statistical knowledge
about the number of sensors in the network. Moreover, the strategy can be extended in order to compute on the fly the
minimal number of eigenfunctions guaranteeing a certain regression quality.

APPENDIX

Proof (of Prop. 3) We rewrite (15) as
V −1r br = Z (48)



and (18) as (
V −1r + V −1d (Sg)− V −1r

)
bd (Sg) = Z . (49)

Subtracting (49) to (48) we then obtain

br − bd (Sg) = Vr
(
V −1d (Sg)− V −1r

)
bd (Sg) (50)

from which it immediately follows that

‖bd − br (Sg)‖2 =
∥∥Vr (V −1d (Sg)− V −1r

)
bd (Sg)

∥∥
2
. (51)

Defining then UC and US by means of (25) and (26), it is immediate to check that V −1d (Sg)− V −1r = US (Sg) +UCfrom
which inequality (27) immediately follows.

To prove (28), we rewrite (15) as
(
diag

(
γ

λe

)
+

S∑

i=1

CTi Ci

)
br +

(
S∑

i=1

(
CEi

)T
CEi −

S∑

i=1

CTi Ci

)
br

=

S∑

i=1

CTi yi −
S∑

i=1

(
C
\E
i

)T
yi

(52)

and (11) as (
diag

(
γ

λe

)
+

S∑
i=1

CTi Ci

)
bc =

S∑
i=1

CTi yi . (53)

After subtracting (53) to (52), we obtain (
diag

(
γ

λe

)
+

S∑
i=1

CTi Ci

)
(bc − br) =

=

(
S∑
i=1

(
CEi
)T
CEi −

S∑
i=1

CTi Ci

)
br +

S∑
i=1

(
C
\E
i

)T
yi .

(54)

Substituting now each Ci in the right side of (54) with CEi +C
\E
i , exploiting the fact that C\Ei br = 0 (where 0 is an infinite

dimensional vector of zeros), and properly collecting the various terms, we obtain

bc − br =(
diag

(
γ

λe

)
+

S∑
i=1

CTi Ci

)−1 S∑
i=1

(
C
\E
i

)T
(yi − Cibr) .

(55)

Since diag
(
γ
λe

)
+
∑S
i=1 C

T
i Ci ≥ diag

(
γ
λe

)
(in a matricial positive definite sense), we obtain

‖bc − br‖2 ≤
S∑
i=1

∥∥∥∥diag(λeγ
)(

C
\E
i

)T
(yi − Cibr)

∥∥∥∥
2

. (56)

Rewriting yi −Cibr as yi −CEi bd (Sg) +CEi bd (Sg)−CEi br and using definitions (21) and (22), it follows immediately
that

‖bc − br‖2 ≤ γa

S∑

i=1

‖yi−Cibd (Sg)‖2 + γb

S∑

i=1

‖br−bd (Sg)‖2

≤ γa

S∑

i=1

‖yi−Cibd (Sg)‖2 + γbSmax ‖br−bd (Sg)‖2 .
(57)

Notice that γa is finite since for every x ∈ X it holds that∥∥∥∥diag(λeγ
)
C\E (x)

∥∥∥∥2
2

≤ sup
x∈X ,e∈N+

φe (x) ·
+∞∑

e=E+1

λe
γ

(58)

with supx∈X ,e∈N+
φe (x) < +∞ because eigenfunctions are continuous on a compact, and also with

∑+∞
e=E+1

λe
γ < +∞

since K is Mercer. In the same way it is possible to show that also γb is finite.
(28) can then be proved substituting (57) in

‖bc − bd (Sg)‖2 ≤ ‖bc − br‖2 + ‖br − bd (Sg)‖2 . (59)
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