IMPRESS H2020 project: Towards higher purities of biochemicals by

Mitra Ila, Anna Zaykovskaya, Marjatta Louhi-Kultanen, Erik Temmel, Manfred Stepanski, Michael Ginter, Ben McKay, Siu-Ha Soo-Tang, Ed de Jong crystallization

Introduction

The project aims to develop a hybrid biorefinery process consisting of integrated upstream and downstream technologies in order to refine renewable resources such as non-edible biomass into sustainable bioproducts. The development of separation/purification technique for process streams containing polyols and co-produced impurities is an important stage for production of value-added products.

Project objectives

Develop separation and purification methods for Dawn upstream process (Research objective)

https://www.aspire2050.eu/impress

Develop and upscale modular downstream processes

To execute a conceptual process design (CPD), and to prepare an environmental life cycle assessment

Validate the IMPRESS concept by integrating the upstream and downstream processes

Research methodology

Crystallization from solutions

Crystallization by cooling, antisolvent,

with an antisolvent addition

evaporative and cooling crystallization

• FBRM was used to provide precise and highly sensitive chord length data collection to capture real-time changes in crystallization.

Discussions

- Developing a promising process for production of chemicals of the desired quality that can replace fossil-based products requires the identification of a suitable crystallization technique, making necessary modifications such as addition of agents and modifier as well as selection of appropriate pre/post-crystallization treatments.
- A comprehensive study on thermodynamics, kinetics of crystallization and analysis of final products under different operating conditions has been done in order to determine the optimum conditions for the intended systems.

Crystallization from melt

Continuous crystallization

Thermodynamics of crystallization

Kinetics of crystal growth

Product

Estimation of solid-liquid phase equilibria using predictive activity coefficient model (UNIFAC and UNIFAC-DMD model) or development of a semi-empirical model.

In situ monitoring of melt crystallization process using a modular camera system

Influence of operating condition on crystal growth rate via image analysis

Evaluation of crystallization yield

Impact of thermodynamics and kinetics of crystallization on purity of final product

Future direction

- Purification of highly impure materials by crystallization
- Influence of impurities on crystal growth rate
- In-depth study of crystallization kinetics by MSMPR model
- Investigation on the role of transport phenomena on growth kinetics of crystals and purification efficiency.

Acknowledgements

This project has received funding from European Union's Horizon 2020 research and innovation programme under grant agreement No 869993.