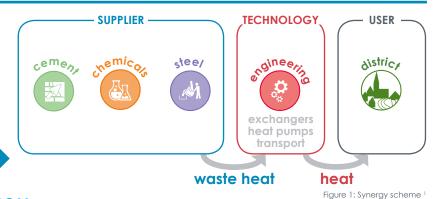


CASE WATCH 03: DISTRICT HEATING

Reuse low-temperature waste heat from process industry to supply district heating networks.


Reduce primary resources by valorising waste heat in communities.

HEATING OUR CITIES

KEY INSIGHTS

- value waste energy
- reduce CO₂ emissions
- invest in district heating
- collaborate with society

CROSS-SECTOR COLLABORATION

Energy-intensive industries have a high potential to share waste heat with surrounding communities.

Communities have a growing demand for waste heat to feed district heating networks.

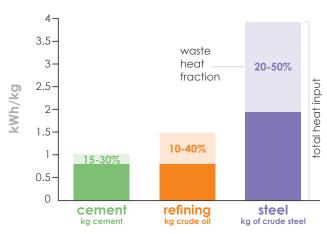


Figure 2: Waste heat potential per sector 1,2,3,4

SUSTAINABILITY IMPACT

Wins for industry

- > for suppliers: 17-20 €/MWh waste heat¹
- > for districts: increase heating network efficiency^{5,6}

Environmental gains

primary resource savings:
10-20 kWh saved/ton crude steel produced^{5,6}

Wins for society

- > waste heat supply to communities^{6,7}
- > improved community relations in regional clusters
-) job creation and new skills development^{6,7}

Figure 3: Sustainability

CASE WATCH 03: DISTRICT HEATING

REFERENCES

- H2020: EPOS project. 2015 19. https://www.spire2030.eu/epos
- 2. Frost & Sullivan. "Waste Heat Recovery Opportunities in Selected US Industries," HeatisPower Association website, 2010. [Online]. Available: http://www.heatispower.org/wp-content/uploads/2011/10/Frost-and-Sullivan-on-waste-heat-recovery.pdf. [Accessed: 18-Feb-2018].
- 3. Cochez, E. Nijs, W. "Cement prodcution", Energy technology sytems analysis programme, Technology brief 103, June 2010. [Online]. https://iea-etsap.org/E-TechDS/PDF/l03 cement June 2010 GS-gct.pdf. [Accessed: 18-Feb-2018].
- Margolis, N. Brindle, R. "Energy and Environmental Profile of the U.S. Iron and Steel Industry", US Department of Energy, Office of Industrial Technologies, August 2000. [Online]. Available: https://www.energy.gov/sites/prod/files/2013/11/f4/steel-profile.pdf. [Accessed: 18-Feb-2018].
- 5. "Advantages of District Heating | Energy Storage from summer to winter | Decarbonising the grid | Demand Side response." [Online]. Available: http://www.icax.co.uk/Advantages District Heating.html. [Accessed: 20-Feb-2019].
- 6. "Benefits to heat networks." [Online]. Available: http://blog.switch2.co.uk/blog/benefits-to-heat-networks. [Accessed: 20-Feb-2019].
- 7. Euroace. "How many jobs? A Survey of the Employment Effects of Investment in Energy Efficiency of Buildings," The Energy Efficiency Industrial Forum, 2012. [Online]. Available: https://euroace.org/wp-content/uploads/2016/10/2012-How-Many-Jobs.pdf. [Accessed: 20-Feb-2019].

