

CASE WATCH 04: ENERGY OPTIMISATION

Optimise energy use in process industry and seek synergies with other process industries.

Reduce primary resources by increasing energy efficiency onsite and in industrial clusters.

GROWING OUR EFFICIENCY

KEY INSIGHTS

- reduce energy intensity
- optimise energy use
- reduce CO₂ emissions
- integrate sites & clusters

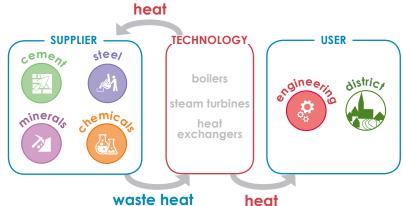


Figure 1: Synergy scheme

CROSS-SECTOR COLLABORATION

Energy-intensive industries have a high potential to recover and reuse waste energy in regional clusters.

Energy-intensive industries can valorise waste energy in regional clusters, esp. in chemical and steel sectors.

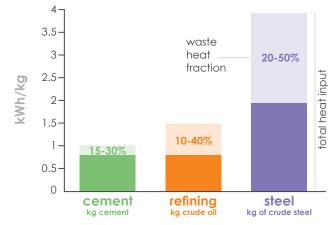


Figure 2: Waste heat potential per sector 1,2,3,4

SUSTAINABILITY IMPACT

Wins for industry

-) for suppliers: 40-80% heat recovery potential¹
- > for industry: 5-10% heat input reduction¹

Environmental gains

> primary energy savings: 80-150 kWh electricity produced/ton steel produced^{1,5}

Wins for society

-) public health benefits due to energy reuse
- > improved business relations in regional clusters
-) job creation and new skills development⁵

Figure 3: Sustainability

CASE WATCH 04: ENERGY OPTIMISATION

REFERENCES

- H2020: EPOS project. 2015 19. https://www.spire2030.eu/epos
- 2. Frost & Sullivan. "Waste Heat Recovery Opportunities in Selected US Industries," HeatisPower Association website, 2010. [Online]. Available: http://www.heatispower.org/wp-content/uploads/2011/10/Frost-and-Sullivan-on-waste-heat-recovery.pdf. [Accessed: 18-Feb-2018].
- 3. Cochez, E. Nijs, W. "Cement production", Energy technology sytems analysis programme, Technology brief 103, June 2010. [Online]. Available: https://iea-etsap.org/E-TechDS/PDF/l03 cement June 2010 GS-gct.pdf. [Accessed: 18-Feb-2018].
- 4. Margolis, N. Brindle, R. "Energy and Environmental Profile of the U.S. Iron and Steel Industry", US Department of Energy, Office of Industrial Technologies, August 2000. [Online]. Available: https://www.energy.gov/sites/prod/files/2013/11/f4/steel_profile.pdf. [Accessed: 18-Feb-2018].
- 5. "An innovative partnership between Veolia and ArcelorMittal to modernize energy production at Fos-sur-Mer," Veolia. [Online]. Available: https://www.veolia.com/en/newsroom/press-releases/innovative-partnership-between-veolia-and-arcelormittal-modernize-energy-production-fos-sur-mer. [Accessed: 20-Feb-2019].

