

CASE WATCH 09: INDUSTRIAL WATER NETWORKS

Optimise water use in process industry via water networks in industrial clusters.

Increase water efficiency by cross-sector collaboration in industrial water networks.

CASCADING OUR WATER

KEY INSIGHTS

- optimise water use
- reduce fresh water demand
- integrate sites & clusters



Figure 1: Synergy scheme ¹

CROSS-SECTOR COLLABORATION

Energy-intensive industries have a high potential to exchange water in industrial clusters.

Industrial clusters have a growing demand for regional water networks.

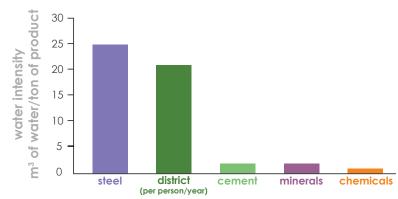


Figure 2: Cross-sector potential 1,2,3,4,5,6,7

SUSTAINABILITY IMPACT

Wins for industry

- > overall gains: 1-1.5 €/m³ exchanged8
- high relevance in water scarce regions^{4,8}

Environmental gains

> fresh water savings:10-40% potential9

Wins for society

- > security of supply due to water reduction
- > improved community relations in regional clusters
-) job creation and new skills development

Figure 3: Sustainability ¹

CASE WATCH 09: INDUSTRIAL WATER NETWORKS

REFERENCES

- H2020: EPOS project. 2015 19. https://www.spire2030.eu/epos
- 2. S. M. Hosseinian and R. Nezamoleslami, "Water footprint and virtual water assessment in cement industry: A case study in Iran," Journal of Cleaner Production, vol. 172, pp. 2454–2463, Jan. 2018.
- 3. "Use of freshwater resources," European Environment Agency. [Online]. Available: https://www.eea.europa.eu/data-and-maps/indicators/use-of-freshwater-resources-2/assessment-3. [Accessed: 20-Feb-2019].
- 4. "Perspectivas de la población mundial División de la población Naciones Unidas." UN, 2017. [Online]. Available: https://population.un.org/wpp/. [Accessed: 20-Feb-2019].
- 5. P. Sun, A. Elgowainy, M. Wang, J. Han, and R. J. Henderson, "Estimation of U.S. refinery water consumption and allocation to refinery products," Fuel, vol. 221, pp. 542–557, Jun. 2018.
- 6. V. Colla, I. Matino, T. A. Branca, B. Fornai, L. Romaniello, and F. Rosito, "Efficient Use of Water Resources in the Steel Industry," Water, vol. 9, no. 11, p. 874, Nov. 2017.
- 7. R. C. Herrebrugh, "The blue and grey water footprint of industry and domestic water supply." University of Twente, Twente, The Netherlads, 2018. [Online].

 Available: https://www.utwente.nl/en/et/wem/education/msc-thesis/2018/herrebrugh.pdf
 [Accessed: 20-Feb-2019].
- 8. "Agricultural, industrial and household water prices in late 1990s," European Environment Agency. [Online]. Available: https://www.eea.europa.eu/data-and-maps/figures/agricultural-industrial-and-household-water-prices-in-late-1990s. [Accessed: 20-Feb-2019].
- 9. J. Klemeš, "Industrial water recycle/reuse," Current Opinion in Chemical Engineering, vol. 1, no. 3, pp. 238–245, Aug. 2012.

