

CASE WATCH 11: CO-PRODUCT VALORISATION (CEMENT)

Transform industrial co-products into raw materials for the cement and construction sector.

Reduce use of primary resources by valorising secondary materials in another sector.

REUSING OUR WASTE

KEY INSIGHTS

- value waste streams
- reduce primary resources
- reduce CO₂ emissions
- create new markets

Figure 1: Synergy scheme ¹

CROSS-SECTOR COLLABORATION

Process industries have a high potential to better valorise co-products such as ash, slag and sludge.

Cement industries have a growing demand for (secondary) raw materials.

Steel sludge, Fly ash
Sludge, Fly ash

Urban sludge

Figure 2: Cross-sector potential ^{2,3,4,5,6,7,8,9}

SUSTAINABILITY IMPACT

Wins for industry

- > for suppliers: reduction in waste
- > for construction industry: reduction in raw materials^{6,8}

Environmental gains

> CO₂ emissions reduction in cement: 0.4 - 0.7 ton CO₂ saved/ton steel co-product use⁸

Wins for society

-) public health benefits due to emissions reduction
- > improved business relations in regional clusters
-) job creation and new skills development^{1,8}

Figure 3: Sustainability ¹

CASE WATCH 11: CO-PRODUCT VALORISATION (CEMENT)

REFERENCES

- H2020: EPOS project. 2015 19. https://www.spire2030.eu/epos
- 2. EPOS project D2.3 (Cement blueprint). https://www.spire2030.eu/epos
- 3. Columbia University, "Welcome to WTERT:: Waste-to-Energy Research and Technology Council." [Online]. Available: http://www.seas.columbia.edu/earth/wtert/faq.html. [Accessed: 04-Apr-2019].
- 4. World Steel Association, Fact energy 2018 Energy use in the steel industry 2018 https://www.worldsteel.org/en/dam/jcr:f07b864c-908e-4229-9f92-669f1c3abf4c/fact_energy_2018.pdf
- 5. L. P. Güereca, N. Torres, and C. R. Juárez-López, "The co-processing of municipal waste in a cement kiln in Mexico. A life-cycle assessment approach," J. Clean. Prod., vol. 107, pp. 741–748, Nov. 2015.
- S. Badur and R. Chaudhary, Utilization of Hazardous Wastes and by-Products as a Green Concrete Material Through S/S Process: A Review. 2008.
 BY-PRODUCTS AS A GREEN CONCRETE MATERIAL THROUGH S/S PROCESS: A REVIEW.
- 7. A. M Zain, M. Shaaban, and H. Mahmud, Immobilization of Petroleum Sludge Incorporating Portland Cement and Rice Husk Ash, vol. 1. 2010.
- 8. "Action plan for enhancing the use of alternate fuels and raw materials in the Indian cement industry | Copenhagen Centre on Energy Efficiency Knowledge Management System," IPP, 2013.
- 9. UN-Habitat, "Global Atlas of Excreta, Wastewater Sludge, and Biosolids Management," UN-Habitat, 1030/08E, 2008.

