

CASE WATCH 13: CO VALORISATION FROM STEEL

Transform CO rich off-gases into raw materials for the chemical industry.

Reduce fossil dependency by valorising CO emissions in the chemical industry.

CLOSING CO LOOPS

KEY INSIGHTS

- value CO streams
- reduce primary resources
- reduce CO₂ emissions
- integrate sites & clusters

Figure 1: Synergy scheme

CROSS-SECTOR COLLABORATION

Steel industry has a high potential to supply CO to the chemicals industry. Industries have a growing demand for valorising carbon emissions.

Figure 2: Cross-sector potential 1,2,3,4

SUSTAINABILITY IMPACT

Wins for industry

> for suppliers: 50-150 €/1000 Nm³ CO⁴
> for industry: 150-300 €/ton product³

Environmental gains

> CO₂ emissions reduction: 20-40% CO₂ saved/ton crude steel produced^{2,3}

Wins for society

public health benefits due to emissions reduction

) job creation and new skills development¹

CASE WATCH 13: CO VALORISATION FROM STEEL

REFERENCES

- H2020: EPOS project. 2015 19. https://www.spire2030.eu/epos
- 2. W. Uribe-Soto, P. Jean-François, J. Commenge, and F. Laurent, "A review of thermochemical processes and technologies to use steelworks off-gases," Renew. Sustain. Energy Rev., vol. 74, pp. 809–823, 2017.
- 3. Institute for Sustainable Process Technology, "CORESYM: Carbon monoxide re-use through industrial symbiosis Metabolic," Dec. 2017.
- 4. J. Arvola, J. Harkonen, M. Mottonen, H. Haapasalo and P. Tervonen, "Combining Steel and Chemical Production to Reduce CO2 Emissions," Low Carbon Econ., vol. 2, no. 3, pp. 115–122, 2011.

