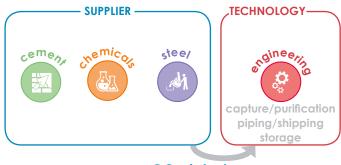


CASE WATCH 16: INDUSTRIAL CO, CAPTURE AND STORAGE

Store CO₂ streams from process industry via piping and shipping in empty gas fields.


Reduce CO₂ emissions by capturing and transporting for permanent storage.

CLOSING CO₂ LOOPS

KEY INSIGHTS

- reduce CO₂ emissions
- value existing logistics
- integrate sites & clusters

CO, rich streams

Figure 1: Synergy scheme 1.2

CROSS-SECTOR COLLABORATION

Process industries have a certain potential to capture and jointly store CO₂.

Industries have a growing demand for strategies towards the low-carbon economy.

CO₂ produced (kg/kWh) Reference plant **Plant** with CCS

SUSTAINABILITY IMPACT

Figure 2: Carbon Capture and Storage (CCS) potential 1,2,3,4

Wins for industry

- > for suppliers: 15-35 €/ton CO₂ emissions reduction^{3,4}
- for clusters: low-carbon profile^{2,3}

Environmental gains

> CO₂ emissions reduction: 10-90% CO₂ captured (depending on situation)^{2,3,5}

Wins for society

- > public health benefits due to emissions reduction¹
- > improved business relations in regional clusters
-) job creation and new skills development

Figure 3: Sustainability

CASE WATCH 16: INDUSTRIAL CO, CAPTURE AND STORAGE

REFERENCES

- H2020: EPOS project. 2015 19. https://www.spire2030.eu/epos
- 2. Metz, B. Davidson, O. De Coninck, H. Loos, M. Meyer L. "Carbon Dioxide Capture and Storage," Cambridge University Press, UK. pp 431. IPCC, 2005. Available: https://www.ipcc.ch/report/carbon-dioxide-capture-and-storage/. [Accessed: 20-Jun-2019].
- 3. Naims, H. "Economics of carbon dioxide capture and utilization—a supply and demand perspective," Environmental Science and Pollution Research International, 2016 23(22), 22226–22241.
- 4. Carbon Next project. "Deliverable 3.1 Availability and price analysis," 2018. [Online]. Available: http://carbonnext.eu/Deliverables/ /D3.1%20CO2%20and%20CO%20availability% 20and%20price%20analysis.pdf. [Accessed: 18-Feb-2018].
- 5. Onita, J. "Master theisis: How does industrial symbiosis influence environmental performance?," Linköping University, Campus Norrköping. 2006 [Online]. Available: https://www.diva-portal.org/smash/get/diva2:22727/FULLTEXT01.pdf%20%20%5bAccessed:%2018-Feb-2019%5d. [Accessed: 18-Feb-2019].

