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Chapter 1

Introduction

1.1 Objectives

This report aims at delivering a sound theoretical and applied framework for the modelling and

control of industrial processes and, in general, data-intensive processes, i.e., processes which

produce a lot of data.

The main objective of this work is to define a modelling architecture and structured workflows

which will serve as guidelines in future industrial applications. At the same time, we will provide

algorithmic tools for data-driven modelling and control and online recalibration of the controllers

using process analytics techniques. Our modelling approach is entirely data-driven and, to this

end, we follow two approaches: black-box modelling, where we assume no structural knowl-

edge of the underlying physical process and grey-box modelling where we commence from first

principles to specify a structure for our model and then we use data to identify its parameters.

DISIRE involves two industrial processes which are relevant for our purposes: the walking

beam furnace of MEFOS and the naphtha/LPG cracking furnace of DOW Chemical. Historical

data have been obtained from both processes and have been properly curated. The existence

of a dynamic simulator as a fast-running surrogate of the real process is essential for a reliable

testing.

Great attention has been given to alternative and novel identification methodologies using

linear and non-linear model structures. There are two schools in system identification – either

for linear or nonlinear models – the traditional batch approach, where data are collected, pre-

processed and used to build a model offline (the procedure may be repeated sporadically to

detect changes in the model) and the emerging recursive approach, where data are merely

stored in a buffer, a model is trained and as new data from the process arrive, the model is

continuously updated. This report pursues both approaches and provides a comparative study.

The main objectives of this report can be summarized as follows:

1. To provide a precise technical problem statement for the above control problems

2. To derive dynamical models based on black and grey-box modelling techniques

3. To estimate optimal static maps using PAT data

4. To measure, visualise and characterise the modelling uncertainty

5. To define performance indicators based on the outcomes of WP1 and in collaboration

with MEFOS and DoW Chemical. The performance indicators we will introduce will be

5
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technical, economic and related to safety and the environment

6. To design MPC schemes based on stochastic process models to account for the uncer-

tainty in modelling

7. To introduce new algorithmic and methodological techniques for control and identification

and demonstrate their features

1.2 Contributions

1.2.1 Beyond the state of the art

In this report we present results which are beyong the state of the art and by doing so we try

to offer a unique value proposition for the DISIRE industrial partners, but also a pan-European

value proposition. We showcase that the use of data which can be easily collected from a

process, can lead to the definition of a closed loop system which has the capacity to attenuate

structural changes in the system dynamics (using adaptive identification techniques), changes in

the probability distribution of the underlying uncertainty (using a scenario-based representation

of the uncertainty) and control the system effectively and proactively (using stochastic model

predictive control).

Moreover, we propose a unified framework for online system identification, control and

process-level optimisation of

WP2 has produced the following dissemination material:

Journal articles
1. A. Bemporad, V. Breschi and D. Piga, “Identification of Piecewise Affine Models via Recur-

sive Multiple Least Squares and Multicategory Discrimination,” submitted to Automatica

on July, 1, 2015

2. S. Formentin, D. Piga, R. Toth and S. Savaresi, “Direct design of LPV controllers from

data,” Paper provisionally accepted to Automatica, 2015

3. A. Ebadat, G. Bottegal, D. Varagnolo, B. Wahlberg, K.H. Johansson, “Regularized Deconvo-

lution- based Approaches for Estimating Room Occupancies,” IEEE Transactions on Au-

tomation Science and Engineering (provisionally accepted) See http://goo.gl/5yVsWS

4. D. Varagnolo, F. Zanella, A. Cenedese, G. Pillonetto, L. Schenato, “Newton-Raphson Con-

sensus for Distributed Convex Optimization,” IEEE Transactions on Automatic Control (ac-

cepted for publication) See http://goo.gl/c48usd

Refereed proceedings
1. P. Sopasakis, P. Patrinos and N. Freris, “Compressed sensing based on streaming data”,

EUSIPCO: European signal processing conference, 2016, Accepted.

2. D. Varagnolo, G. Pillonetto, L. Schenato. “Auto-tuning procedures for distributed nonpara-

metric regression algorithms,” European Control Conference, 2015 - see http://goo.gl/d0hnlR.

3. R. Carli, G. Notarstefano, L. Schenato, D. Varagnolo, “Distributed quadratic programming

DISIRE D2.1 v1.2.pdf © DISIRE Consortium Page 6 of 174



H2020-SPIRE-2014 DISIRE

under Asynchronous and Lossy Communications via Newton-Raphson Consensus,” Eu-

ropean Control Conference, 2015, See http://goo.gl/BBkuZx.

4. A. Ebadat, G. Bottegal, D. Varagnolo, B. Wahlberg, H. Hjalmarsson and K.H. Johansson.

“Blind identification strategies for room occupancy estimation,” European Control Confer-

ence, 2015 - See http://goo.gl/ePyD3Y

5. R. Lucchese and D. Varagnolo, “Networks cardinality estimation using order statistics,”

American Control Conference, 2015 - See http://goo.gl/ki2Sq5

Other A web page was created at dysco.imtlucca.it/rcs to summarise and present in a high-

level manner our novel methodology for recursive compressed sensing.

1.2.2 Contributions of partners

WP2 has actively involved many partners of the DISIRE consortium who have contributed ei-

ther to the theoretical efforts, and/or the statement of a sensible (modelling or control or other)

problem formulation, and/or the development of algorithms, software and tools to address these

problems. The contributions of the various partners are summarised in Table 6.1. It can be seen

that this report is the outcome of the concerted efforts of most partners in DISIRE.

1.3 Structure

This document starts with a theoretical part (Chapter 2), where we report our theoretical contri-

butions. These will then serve as the machinery with which we address the control applications

of the project, namely the walking beam furnace of MEFOS (Chapter 4) and the naphtha/LPG

cracking process of DOW Chemical (Chapter 5).

In Chapter 6 we present two modelling approaches, namely using FIFO models and cellular

automata models, for the dynamics of material flow through ore bunkers. We extend the discus-

sion towards how these theoretical tools can be verified and used in an industrial environment

and we formulated and stated a control problem.

Chapter 6 provides full technical specifications for KGHM’s Lubin mine and details on the de-

velopment of dynamical models for the material flow through bunkers (using cellular automata)

and the dynamics of the transportation of ore using conveyor belts. The report is concluded in

Chapter 7 where we summarise the main contributions of this report and discuss how these can

be used to improve the industrial case studies of DISIRE and from this perspective we provide

a plan of future work.

DISIRE D2.1 v1.2.pdf © DISIRE Consortium Page 7 of 174
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Partner Contribution
IMTL IMTL was the WP leader and organised the exchange of know-how

among industrial partners (MEFOS, DOW Chemical and KGHM), LTU
which is a university and research institute and ABB, G-Stat and ODYS
which are technological developers. IMTL derived models for the walking
beam furnace, the most successful of which are reported here, analysed
their predictive ability using the approach described in Section 4.2.1 and
proposed the stochastic MPC formulation in Chapter 3. Further, IMTL
organised weekly Skype meetings to promote the exchange of knowl-
edge and experiences among the involved partners and finally compiled
this report in LATEX.

LTU LTU participated actively in the development and analysis of uncertainty
of nonlinear models such as (LS)SVM/SVR and studied the control con-
figuration problem both from a theoretical perspective and for the case
study of MEFOS (the walking beam furnace). Developed models for the
combustion quality in terms of predicted averate Oxygen concentration.

MEFOS MEFOS provided the data that were used to produce the results in Chap-
ter 4 and assisted the development of those models enabling the under-
standing of crucial details about the process. The model structure and
the grey-box approach were based on information provided by MEFOS.

DOW Chemical DOW Chemical provided the data that were used to produce the results
which are reported in Chapter 5. They also clarified the objectives of the
control problem as a follow-up from deliverable reports D1.X. Reviewed
Chapter 5

CIRCE Confirmed the process specifications for the naphtha/LPG cracking fur-
nace in Chapter 5. Both CIRCE and DOW Chemical assisted WP2 in
compiling Table 5.2.

G-Stat G-Stat preprocessed the data of DOW Chemical which were used in
Chapter 5 by combining multiple CSV files with raw measurements pro-
vided by DCI.

ABB Using the theory of cellular automata, constructued detailed models for
the mass flow inside the ore bunkers. Simulated the dynamic behaviour
of the ore bunkers using these models. Stated the control problem and
its objectives and performance indicators in Chapter 6.

PWR Developed and analysed the ore mass flow models in Section 6.3.5 us-
ing statistical modelling tools.

KGHM Provided the detailed technical specification in Chapter 6 and collected
the pertinent data.

ODYS Reviewed Chapters 2, 3 and 6. Filtered the preprocessed DOW Chem-
ical data provided by G-Stat for application in model identification (Sec-
tion 5.1.2). Constructed models using custom identification algorithm
in order to describe cracking furnace operation with simulation results
indicating quality of predictions (Section 5.2).

Table 1.1: Contributions of DISIRE partners to this report.
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Chapter 2

Novel methodologies in modelling and
control

2.1 From data to models – a streaming approach

Time-invariance is often an essential assumption which effectuates great simplifications and

allows for process models to be derived once offline following the so-called batch approach.

This is though a double-edged sword: deriving a model from data is a an one-shot task, but

the resulting model will be insensitive to systematic changes which may occur because of the

natural wear of the involved mechanical parts and sensors. With the traditional batch approach,

data which are gathered in real time contribute nothing to the original model’s accuracy and

predictive ability. What is more, the batch approach to model training is often far from trivial

especially when the available data are of very large size (sometimes up to thousands of GB).

But, there is an alternative approach which is promising for data-intensive processes and can

be used to recalibrate the obtained process model in real time — this is the streaming approach.

In the first part of the presentation of the method we propose, we study the problem of online

compressed sensing based on a stream of data; we term the proposed method streaming or

recursive compressed sensing where we solve a LASSO (`1-regularized) optimization problem

using the solution we obtained at the previous time instant. We then extend the proposed

methodology to the case of online dynamical modeling which, in fact, turns out to be a specific

case of the methodology we propose for compressed sensing.

2.1.1 Online compressed sensing using streaming data

In signal processing, continuous signals are typically sampled at discrete instances in order to

store, process, and share. In doing so, signals of interest are assumed sparsely representable

in an appropriately selected orthonormal basis, i.e., they can be reconstructed by storing few

non-zero coefficients in the given basis. For instance, the Fourier basis is used for bandlimited

signals – with prominent applications in communications – while wavelet bases are suitable for

representing piecewise smooth signals, such as bitmap images. Traditionally, the celebrated

Nyquist-Shannon sampling theorem suggests a sampling rate that is at least twice the signal

bandwidth; however this rate may be unnecessarily high compared to the signal’s innovation,

9
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i.e., the minimum number of coefficients sufficient to accurately represent it in an appropriately

selected basis.

Compressed Sensing (CS) [1, 2] is a relatively new sampling paradigm that was introduced

for sampling signals based entirely on their innovation, and has become ever since a major

field of research in signal processing and information theory. The major contribution of this

framework is a lower sampling rate compared to the classical sampling theory for signals that

have sparse representation in some fixed basis [3], with notable applications in imaging [4],

such as MRI. Compressed sensing is a signal processing methodology for the reconstruction

of sparsely sampled signals and it offers a new paradigm for sampling signals based on their

innovation, that is, the minimum number of coefficients sufficient to accurately represent it in an

appropriately selected basis. Compressed sensing leads to a lower sampling rate compared

to theories using some fixed basis and has many applications in image processing [5], medical

imaging and MRI [4], photography, holography [6], facial recognition [7], radio astronomy [8],

radar technology [9] and more.

Compressed sensing can also be directly used for system identification as recently shown

in [10]. For model identification we will follow a more straighforward approach which we present

in Sectionn 2.1.2.

Compressed sensing. For a vector x ∈ IRn we define the `0 pseudo-norm as the cardinality

of its support ||x||0:= |supp(x)|, where the support is the set of non-zero entries supp(x) := {i :

xi 6= 0}. A vector x is s-sparse if and only if it has at most s non-zero entries, ||x||0≤ s.

Compression. CS performs linear sampling y = Ax, where A ∈ IRm×n. Compression is

performed by obtaining m� n measurements. The main result states that any s-sparse vector

x ∈ IRn, can be sampled by a universal1 matrix A with m = Θ(s log(ns )), and may then be

reconstructed perfectly solely from (noiseless) measurements y [11]. For this purpose, matrix A

needs to satisfy a certain Restricted Isometry Property : there exists δs ∈ [0, 1) sufficiently small

so that:

(1− δs)||x||22≤ ||Ax||22≤ (1 + δs)||x||22 (2.1)

holds for all s-sparse vectors x. For many practical applications, taking m = 4s works well. The

success of CS lies in that the sampling matrix can be generated very efficiently as a random

matrix, e.g., having i.i.d. Gaussian entries N (0, 1/m), or i.i.d. Bernoulli entries taking values

{−1, 0, 1} with probabilities 1/6, 2/3, 1/6 respectively. The Bernoulli matrix has the additional

advantage of being sparse, which makes matrix-vector multiplications more economical. Note

that in practice measurements are typically noisy, y = Ax+ w.
1The matrix A is universal in the sense it may be used to sample any vector with no more than s non-zeroes,

regardless of their positions.

DISIRE D2.1 v1.2.pdf © DISIRE Consortium Page 10 of 174
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Decompression. In order to retrieve the original vector x from noisy measurements y = Ax+

w, one needs to solve the `1-regularized least squares problem:

minimize 1
2‖Ax− y‖

2
2+λ‖x‖1, (2.2)

where λ is the regularization parameter that controls the trade-off between sparsity and re-

construction error. This is best known as Least Absolute Selection and Shrinkage Operator

(LASSO) in the statistics literature [12]. There are several results analyzing the reconstruction

accuracy of LASSO; for example [13] states that if w ∼ N (0, σ2I), mini∈supp(x)|xi|> 8σ
√

2 log n,

and we choose λ = 4σ
√

2 log n then a solution x? to (2.2) has the same support as x, and its

non-zero entries the same sign with their corresponding ones of x, with high probability. Addi-

tionally, the `2 reconstruction error is proportional to the standard deviation of the noise σ [3].

Remark 1 (Algorithms for LASSO). LASSO can easily be recast as a quadratic program which

can be handled by interior point methods [14]. Additionally, iterative algorithms have been devel-

oped specifically for LASSO; all these are inspired by proximal methods [15] for non-smooth con-

vex optimization: FISTA [16] and SpaRSA [17] are accelerated proximal gradient methods [15],

SALSA [18] is an application of the alternative direction method of multipliers (ADMM). These

methods are first-order methods, in essence generalizations of the gradient method and feature

sublinear convergence. The error defined asG(x̂(t))−G(x∗) whereG(·) is the objective function

of LASSO, and x̂(t) is the estimate at iteration number t, decays as 1/t2 for FISTA, SpaRSA and

SALSA. Here, we devise a proximal Newton-type method with substantial speedup exploiting

the fact that its convergence rate is locally quadratic (i.e., goes to zero roughly like e−ct
2

at the

vicinity of an optimal solution).

Problem statement. The traditional CS framework is naturally offline and requires compress-

ing and decompressing an entire given dataset at one shot. The Recursive Compressed Sens-

ing [11, 19] was developed as a new method for performing CS on an infinite data stream. The

method consists of successively sampling the data stream via applying traditional CS to sliding

overlapping windows in a recursive manner. Consider an infinite sequence, {xi}i=0,1,.... Let

S := lim sup
j→∞

j−1|supp({xi}i=0,...,j−1)|∈ [0, 1]

be the average sparsity. We define successive windows of length n:

x(i) :=
[
xi xi+1 . . . xi+n−1

]>
(2.3)

and take s = Sn the average sparsity parameter for a window of length n. The sampling matrix

A ∈ IRm×n (where we may take m = Θ(s log(ns ))) is only generated once. Each window is

compressively sampled given a matrix A(i):

y(i) = A(i)x(i) + w(i).
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Figure 2.1: Architecture of the recursive compressed sensing algorithm: We propose a two-step
estimation procedure for recovering the data stream: At first, we obtain the LASSO estimates
which are fed into a de-biasing algorithm. For de-biasing, we estimate the signal support and
then perform least squares estimation (LSE) on the support set in order to obtain estimates.
The estimates obtained over successive windows are subsequently averaged.

The sampling matrix A(i) is recursively computed by A(0) = A and A(i) = A(i−1)P, where P is

a permutation matrix which when right-multiplying a matrix cyclically rotates its columns to the

left. This gives rise to an efficient recursive sampling mechanism for the input stream, where

measurements for each window are taken via a rank-1 update [11].

For decompression, we need to solve the LASSO for each separate window:

minimize 1
2‖A

(i)x(i) − y(i)‖22+λ‖x(i)‖1. (2.4)

Note that the windows overlap, hence for a given stream entry, multiple estimates (one per

each window that contains it) may be obtained. These estimates are then combined to boost

estimation accuracy using non-linear support detection, least-squares debiasing and averaging

with provable performance amelioration [11].

The overlap in sampling can further be exploited to speed-up the stream reconstruction: we

use the estimate from a previously decompressed window to warm-start the numerical solver

for LASSO in the next one. This simple idea provides a mechanism for efficient recursive esti-

mation.

Formally, let x(i) = [x̂
(i)
0 . . . x̂

(i)
n−1]> denote the optimal estimate obtained by LASSO in the

i-th window, where we use x̂(i)
j to denote the j-th entry of the i−th window (which according to

our definitions corresponds to the (i + j)-th stream entry). In order to solve LASSO to obtain

x̂(i+1) we may use:

x̂
(i)
[0] =

[
x̂

(i−1)
1 x̂

(i−1)
2 . . . x̂

(i−1)
n−1 0

]>
,

as the starting point in the iterative optimization solver for LASSO in the (i + 1)−th window,

where x̂
(i−1)
j , for j = 1, . . . , n − 1, is the portion of the optimal solution based on the previous

window; we set x̂(i−1)
j , j = 0, 1, . . . , n−1 to be the estimate of the (j+ 1)-th entry of the previous

window, i.e., of xi−1+j . The last entry x̂(i)
n−1 is set to 0, since we are considering sparse streams

with most entries being zero.

Contribution. We devise a new numerical algorithm for solving LASSO based on the recently

developed idea of proximal envelopes [20,21]. The new method demonstrates favorable conver-

gence properties when compared to first order methods (FISTA, SpaRSA, SALSA, L1LS [14]);
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in particular it has local quadratic convergence. Furthermore, this scheme is very efficient as

each iteration boils down to solving a linear system of low dimension. Using this solver in RCS

along with warm-starting leads to substantive acceleration of stream decompression. We verify

this with a rich experimental setup.

Forward Backward Newton Algorithm. Splitting methods in general are optimization meth-

ods for problems which can be written in the general form

minimizeϕ(x) := f(x) + g(x), (2.5)

where f and g are convex functions, f is typically a loss function and g is a regularizer or is used

to encode constraints, as in g(x) = δ(x | C), where δ(· | C) is the indicator function of a set C.

The solution of these problems typically involves two steps: a gradient step which involves ∇f
and a proximal step which requires computations involving the proximal operator of g, that is

proxγg(z) = arg min
x∈IRn

{
g(x) + 1

2γ ‖x− z‖
2
2

}
. (2.6)

The corresponding minimizer is the Moreau envelope of g, that is

gγ(z) = min
x∈IRn

{
g(x) + 1

2γ ‖x− z‖
2
2

}
. (2.7)

Many algorithms which follow this pattern have been proposed in the literature and are con-

sidered well-established and are typically based on operator splittings such as the Forward-

Backward Splitting [22] and the Douglas-Rachford Splitting [23, 24]. Accordingly, many opti-

mization methods are available in the literatures, such as AMM and ADMM. Tough they are sim-

ple to implement, they exploit the problem structure very well and are amenable to distributed

implementations, they are very sensitive to preconditioning and can often be very slow as any

first-order method (i.e., methods which use only gradient information).

In the well-known Forward-Backward Splitting (FBS) f is required to be proper, closed (lower

semi-continuous), and convex with Lf -Lipschitz gradient and g needs to be proper, closed,

convex and “prox-friendly,” i.e., its proximal operator proxγg should be easy to compute. The

basic iteration of the algorithm is

xk+1 = proxγg(x
k − γ∇f(xk)) := Tγ(xk), (2.8)

for γ ∈ (0, 2/Lf ). This algorithm is known to have a global convergence rate of O(1/k), while its

accelerated variant (Nesterov’s accelerate method) has a rate of O(1/k2). Notice that it can be

written as

xk+1 = arg min
z∈IRn

{f(xk) + 〈∇f(xk), z − xk〉+ 1
2γ ‖z − x

k‖2︸ ︷︷ ︸
Qfγ(z;xk)

+g(z)}, (2.9)

and it is illustrated in Figure 2.2.

This algorithm can often be particularly slow, even in its accelerated variant, as its practical
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Figure 2.2: Illustration of the concept of the forward-backward envelope method. The blue line
corresponds to the function f + g which is to be minimized and the red line is the function
Qfγ(x;xk)
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Figure 2.3: The forward-backward envelope function ϕγ .

speed is strongly affected by the preconditioning, which cannot always improve the speed of

convergence to a satisfactory level. To remedy this shortcoming, we may use a better quadratic

model for f as follows

xk+1 = arg min
z∈IRn

{f(xk) + 〈∇f(xk), z − xk〉+ 1
2γ ‖z − x

k‖2Bk+g(z)}, (2.10)

where Bk is ∇2f(xk) or an approximation thereof. This approach, however, comes with the

limitation that there is no closed form for the solution of the minimization problem at each iter-

ation. The Forward-Backward Envelope method combines the simplicity of FBS with the merits

of second order methods.

We define the forward-backward envelope (FBE) of ϕ to be the value function of the FBS

minimization problem

ϕγ(x) = min
z∈IRn

{f(xk) + 〈∇f(xk), z − xk〉+ 1
2γ ‖z − x

k‖2+g(z)}, (2.11)

for γ ≤ 1/Lf . Function ϕγ is presented in Figure 2.3.

FBE possesses certain favorable properties such as that it is a lower bound of ϕ

ϕγ(x) ≤ ϕ(x)− γ

2
‖Rγ(x)‖2, (2.12a)

where Rγ(x) = γ−1(x − Tγ(x)) is the fixed-point residual of the problem and Tγ as in (2.8).

Furthermore, ϕγ satisfied the following inequality

ϕγ(x) ≥ ϕ(Tγ(x)) +
γ

2
(1− γLf )‖Rγ(x)‖2. (2.12b)

From the above two equations we may deduce that ϕ and ϕγ share the same minimizers, that

is

minϕ = minϕγ , (2.13a)

arg minϕ = arg minϕγ . (2.13b)
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FBE can be conveniently expressed as

ϕγ(x) = f(x)− γ

2
‖∇f(x)‖2+gγ(x− γ∇f(x)). (2.14)

The Moreau envelope of a function g serves as a smooth approximation of g (which may be

non-smooth). In particular, as γ becomes smaller and smaller, gγ approximates g from below

and is smooth with gradient

∇gγ(x) = γ−1(x− proxγg(x)). (2.15)

It can now be easily observed that ϕγ inherits the smoothness properties of gγ so long as f is

twice continuously differentiable. Then, we have that

∇ϕγ(x) = γ−1(I − γ∇2f(x))(x− proxγg(x− γ∇f(x))) (2.16)

= (I − γ∇2f(x))Rγ(x). (2.17)

Despite the fact that ϕγ is globally continuously differentiable, it cannot be assumed that it is

C2. It actually fails to be twice continuously differentiable in most cases because of the fact that

g is typically a nonsmooth function. Since the Hessian of ϕγ cannot be assumed to exist, we

need to resort to generalized notions of differentiability such as the Bouligand (B) differentiability

and the Clarke (C) differentiability [25].

Application of the algorithm. Let f(x) = 1
2‖Ax− y‖

2
2, g(x) = λ‖x‖1. Then x? is optimal for

minimize ϕ(x) = f(x) + g(x) (2.18)

if and only if it satisfies

−∇f(x?) ∈ ∂g(x?) (2.19)

where ∂g(x) is the subdifferential of g at x, defined by:

∂g(x)=
{
v ∈ IRn | g(w) ≥ g(x)+v>(w−x),∀w∈IRn

}
, (2.20)

Since g is a multiple of the `1-norm, v = (v1, . . . , vn) ∈ ∂g(x) is equivalent to which, in our

case, is given by: vi = λ sign(xi), for xi 6= 0 and |vi|≤ λ, for xi = 0. Therefore the optimality

conditions (2.19) for the LASSO problem (2.18) become

−∇if(x?) = −λ sign(x?i ), if x?i 6= 0, (2.21a)

|∇if(x?)|≤ λ, if x?i = 0, (2.21b)

Suppose for a moment that we knew the partition of indices α and β corresponding to the

nonzero and zero components of an optimal solution x? respectively, as well as the signs of the

nonzero components. Then we would be able to compute the nonzero components of x? by
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solving the following linear system corresponding to (2.21a):

A>αAαx
?
α = A>α y − λ sign(x?α). (2.22)

Notice that the support set α of x? is much smaller compared to its dimension n. Hence, provided

that α (as well as the signs of non-zero entries) has been identified, the problem becomes very

easy. Roughly speaking, the algorithm we will develop can be interpreted as a fast procedure

for automatically identifying the partition {α, β} corresponding to an optimal solution by solving

a sequence of linear systems of the form (2.22). On the other hand, it can be seen as a Newton

method for solving the following reformulation of the optimality conditions (2.19):

x = proxγg(x− γ∇f(x)), (2.23)

where proxγg is the proximal mapping which we introduced previously and γ is taken smaller

than the Lipschitz constant of f , i.e., γ < 1/‖A‖2. To see that (2.19) and (2.23) are equivalent

−∇f(x) ∈ ∂g(x) ⇐⇒ x − γ∇f(x) ∈ x + γ∂g(x) ⇐⇒ x = (I + γ∂g)−1(x − γ∇f(x)) =

proxγg(x− γ∇f(x)). In the case where g = λ‖·‖1, proxγg is the soft-thresholding operator:

(proxγg(z))i = sign(zi)(|zi|−γλ)+, i = 1, . . . , n. (2.24)

The iterative soft-thresholding algorithm (ISTA) is a fixed point iteration for solving (2.23). In fact,

it is just an application of the well known forward-backward splitting technique for solving (2.19).

On the other hand, FISTA is an accelerated version of ISTA where an extrapolation step between

the current and the previous step precedes the forward-backward step [16,26].

To motivate our algorithm, instead of a fixed point problem, we view (2.23) as a problem of

finding a zero of the so-called fixed point residual :

Rγ(x) := x− proxγg(x− γ∇f(x)). (2.25)

One then would be tempted to apply Newton’s method for finding a root of (2.25). Unfortunately
the fixed point residual is not everywhere differentiable, hence the classical Newton method is
not well-defined. However, it is well known that Rγ is nonexpansive, hence globally Lipschitz
continuous [21]. Therefore the machinery of nonsmooth analysis can be employed to devise
a generalized Newton method for Rγ(x) = 0, namely the semismooth Newton method. Due
to a celebrated theorem by Rademacher, Lipschitz continuity of Rγ implies almost everywhere
differentiability. Let F stand for the set of points where Rγ is differentiable. The B-differential of
the nonsmooth mapping Rγ at x is defined by

∂BRγ(x) :=

{
B ∈ IRn×n

∣∣∣∣∣ ∃{xn} ∈ F : xn → x,

R′γ(xn)→ B

}
. (2.26)

If Rγ is continuously differentiable at a point x ∈ IRn then ∂BRγ(x) = {R′γ(x)}. Other-

wise ∂BRγ may contain more than one elements (matrices in IRn×n). The semismooth Newton
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method for solving Rγ(x) = 0 is simply

xk+1 = xk −H−1
k Rγ(xk), Hk ∈ ∂BRγ(xk). (2.27)

Since in the case of LASSO the fixed point residual is piecewise affine, it is also strongly semis-

mooth. Provided that solution x? of (2.18) is unique (which is the case if for example the entries

of A are drawn Gaussian i.i.d [27]) and that the initial iterate x0 is close enough to x?, the se-

quence of iterates defined by (2.27) is well defined (any matrix in ∂BRγ(xk) is nonsingular) and

converges to x? at a quadratic rate, i.e., lim supk→∞
‖xk+1−x?‖
‖xk−x?‖2 < ∞ [21]. In fact, since the fixed

point residual is piecewise affine for the LASSO problem, it can be shown that (2.27) converges

in a finite number of iterations, in exact arithmetic. Specializing iteration (2.27) to the LASSO

problem, an element Hk of ∂BRγ(xk) takes the form Hk = I − Pk(I − γA>A). Here Pk is a

diagonal matrix with (Pk)ii = 1 for i ∈ αk and (Pk)ii = 0, for i ∈ βk, where

αk = {i | |xki − γ∇if(xk)|> γλ}, (2.28a)

βk = {i | |xki − γ∇if(xk)|≤ γλ}. (2.28b)

Computing the Newton direction amounts to solving the so-called Newton system, Hkd
k =

−Rγ(xk). Taking advantage of the special structure of Pk and applying some permutations, this

simplifies to

dkβk = −(Rγ(xk))βk , (2.29a)

γA>αkAαkd
k
αk

= −(Rγ(xk))αk − γA
>
αk
Aβkd

k
βk
. (2.29b)

Taking into consideration (2.24), we obtain

(Rγ(x))i =

γ(∇if(x) + si(x)λ), i ∈ α,

xi, i ∈ β,
(2.30)

where si(x) = sign(xi − γ∇if(x)), and α, β are defined using (2.29) (dropping index k). There-

fore, after further rearrangement and simplification, the Newton system becomes

dkβk = −xkβk , (2.31a)

A>αkAαk(xkα + dkαk) = A>αky − λsαk(xk). (2.31b)

Summing up, an iteration of the semismooth Newton method for solving the LASSO problem

takes the form xk+1 = xk + dk, which becomes:

xk+1
βk

= 0, (2.32a)

xk+1
αk

= (A>αkAαk)−1(A>αky − λsαk(xk)). (2.32b)

Note a connection with (2.22): the index sets αk, βk serve as estimates for the nonzero and

zero components of x?.
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The second block of equations describes the optimality conditions for

minimize 1
2‖Aαz − y‖

2
2+c>z

where z = xα + dα and c = sα(x)λ. This problem has a solution if and only if

A>αAαd = 0 =⇒ c>d = 0

This is true if and only if c ∈ range(A>αAα). Therefore, solving the Newton system amounts to

solving

A>αAαz = A>α y − c

and setting dα = z − xα, dαc = −xαc . There are two obstacles that we need to overcome before

we arrive at a sound, globally convergent algorithmic scheme for solving the LASSO problem.

The first one is that the semismooth Newton method (2.32) converges only when started close to

the solution. If the initial iterate x0 is far from the solution then (2.32) might produce a divergent

sequence. The second obstacle concerns the fact that (2.32) might not be well defined, in the

sense that Aαk might not have full column rank, hence A>αkAαk will be singular. Indeed when

λ is very small or when xk is far from the solution, the index set αk defined in (2.28a) might

have cardinality larger than m (which is the only case where a singularity may arise given our

construction of A), the number of rows of A. The next two subsections are devoted to proposing

strategies to overcome these two issues.

Overall, the algorithm can be seen as an active set strategy where large changes on the

active set are allowed in every iteration (instead of only one index) leading to faster convergence.

Globalization strategy. To enforce global convergence of Newton-type methods for solving

nonlinear systems of equations it is customary to use a merit function based on which a step τk
is selected which guarantees that

xk+1 = xk + τkd
k (2.33)

decreases the merit function sufficiently. If Rγ was smooth, a first candidate for a merit function

would be 1
2‖Rγ(x)‖2. However, non-smoothness of Rγ since in general this function is not

differentiable and a stepsize τk that ensures ‖Rγ(xk+1)‖2< ‖Rγ(xk)‖2 might not exist.
Recently the following merit function, namely the Forward-Backward Envelope (FBE), was

proposed for problems of the form (2.18)

ϕγ(x) = inf
z∈IRn

{f(x) +∇f(x)>(z − x) + g(z) + 1
2γ ‖z − x‖

2
2}. (2.34)

It is easy to see that function inside the infimum is strongly convex with respect to z and the infi-

mum is uniquely achieved by the forward-backward step Tγ(x) = proxγg(x−γ∇f(x)). Therefore,

in order to evaluate ϕγ at a point x one simply needs to be be able to perform the same oper-

ations required by FISTA. Furthermore, function ϕγ is continuously differentiable with gradient

given by

∇ϕγ(x) = γ−1(I − γ∇2f(x))Rγ(x). (2.35)
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If γ < 1/‖A‖2, then solutions of (2.18) are exactly the stationary points, i.e. the points for which

∇ϕγ(x) becomes zero. In fact one can additionally show that minimizing the FBE (which is an

unconstrained smooth optimization problem) is entirely equivalent to solving (2.18), in the sense

that inf ϕ = inf ϕγ and arg min ϕ = arg min ϕγ . In the case of LASSO where f is quadratic the

FBE is convex.

It is not hard to check that, provided it is well defined, the semismooth Newton direction dk

given by (2.29) is in fact a direction of descent for the FBE, i.e., ∇ϕγ(xk)>dk < 0. Therefore

one can perform a standard backtracking line-search to find a suitable step that guarantees the

Armijo condition and hence global convergence: Pick the first nonnegative integer ik such that

τk = 2−ik satisfies

ϕγ(xk + τkdk) ≤ ϕγ(xk) + ζτk∇ϕγ(xk)
>dk. (2.36)

where ζ ∈ (0, 1/2), and then set xk+1 = xk+τkdk. Furthermore, this step choice guarantees that

as soon as xk is close enough to the solution, τk = 1 will always satisfy (2.36) and the iterates

will be given by the (pure) semismooth Newton method (2.32) inheriting all its convergence

properties.

Continuation strategy. The FBE, through a simple line-search strategy, guarantees global

convergence of the iterates generated by (2.33), where τk is given by (2.36) and dk by (2.29),

provided that Aαk have full column rank. Notice that m � n, i.e., A is a wide matrix. However,

since the goal of solving the LASSO problem is to recover the sparsest solution of Ax = y, we

know that such a solution will have ‖x?‖0 much smaller than m, hence as soon as xk is close to

the solution, Aαk in practice will most likely have full column rank according to our experience.

In fact, iterates for which αk contains more than m indices are of no interest to us since we know

for sure that at the solution the cardinality of α(x?) = {i | |x?i − γ∇f(x?)|> γλ} = {i | x?i 6= 0}
will be (much) smaller than m.

In order to guarantee that αk contains few elements, a simple continuation strategy that

gradually reduces λk to the target value λ is employed. Following [28], we start with λ0 =

max{λ, ‖A>∇f(x0)‖∞} and we decrease λk = max{λ, ηλk−1}, for some η ∈ (0, 1) whenever

‖Rγ(xk)‖≤ λkεk with εk → 0. Not only does this ensure that (2.29) is well defined, but it allows

to solve linear systems of small dimension to determine the Newton direction. A conceptual

pseudo-algorithm summarizing the basic steps of the proposed algorithm is shown hereafter.

Algorithm 1 Forward-Backward Newton with continuation

Require: A, y, x0 ∈ IRn (initial guess), γ ∈ (0, 1/‖A‖2), λ > 0, η ∈ (0, 1), ε (tolerance)
Ensure: x?

λ̄← max{λ, ‖A>∇f(x0)‖∞}, ε̄← ε
while λ̄ > λ or ‖Rγ(xk; λ̄)‖> ε do
xk+1 = xk + τkd

k,
where dk solves (2.31) and τk satisfies (2.36)
if ‖Rγ(xk; λ̄)‖≤ λε̄ then
λ̄← max{λ, ηλ̄}, ε̄← ηε̄

end if
end while
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In Algorithm 1 we denote by Rγ(x; λ̄) the fixed point residual introduced in (2.25) replacing g

by ḡ(x) = λ̄‖x‖1.

Accelerating the Cholesky factorization. Assume we know the Cholesky factorisation of

A>A = L>L and we remove a column from matrix A. Let us write A as follows

A =
[
A1:κ c Aκ+1:n

]
(2.37)

Then

A>A =
[
A1:κ c Aκ+1:n

]> [
A1:κ c Aκ+1:n

]
(2.38a)

=


A>1:κA1:κ A>1:κc A>1:κAκ+1:n

c>A1:κ c>c c>Aκ+1:n

A>κ+1:nA1:κ A1:κc A>κ+1:nAκ+1:n

 (2.38b)

= LL> (2.38c)

=


L11

`12 `22

L31 `32 L33



L11

`12 `22

L31 `32 L33


>

(2.38d)

Once we delete the column c at κ+ 1 we have[
A>1:κA1:κ A>1:κAκ+1:n

A>κ+1:nA1:κ A>κ+1:nAκ+1:n

]
=

[
L̄11

L̄31 L̄33

][
L̄11

L̄31 L̄33

]>
(2.39)

from which we have that

L̄11 = L11 (2.40a)

L̄31 = L31 (2.40b)

and

L̄33L̄
>
33 = L33L

>
33 + `32`

>
32. (2.40c)

The last equation is a rank-1 update (see Golub and Van Loan) and it comes at the cost of

2(n− κ)2 + 4(n− κ).

When Cholesky factorizations are involved in the algorithm we described above, instead of

performing these factorizations at every iteration of the algorithm, we may save a considerable

amoount of operations by simply updating them. From one iteration to the other, usually few

indices enter and/or leave the set α (the set of active indices described above), so, αk and αk+1

are not expected to be much different. It is then computationally cheap to update the Cholesky

factorization ofA>αk+1
Aαk+1

if we know the Cholesky factorization ofA>αkAαk+1
. It may yet happen

that an ab initio Cholesky factorization is computationally cheaper than an update in which αk
and αk+1 are a lot different (i.e., either αk+1 \ αk and/or αk \ αk+1 is a set of high cardinality).
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How may insertions and or removals can the update afford so that it remains computationally

cheaper from a factorization instead of an update? This question can be answered easily if we

can predict the exact number of flops of the update; we can then choose between a Cholesky

update and a Cholesky factorization. Here we show how this can be done.

Having computed a Cholesky factorisation with permutation for the matrix A>A, that is

A>A = PLL>P>, (2.41)

we need to compute the Cholesky factorisation of Ā>Ā where Ā = [A c ]. We have

Ā>Ā =
[
A c

]> [
A c

]
(2.42a)

=

[
A>A A>c

c>A c>c

]
(2.42b)

=

[
P

1

][
L1

`>1 `2

][
L1

`>1 `2

]> [
P

1

]>
(2.42c)

From which we have that

A>A = PL1L
>
1 P
> ⇒ L1 = L, (2.43a)

and `1 is computed from the following nice linear system

PL`1 = A>c⇔ L`1 = P>A>c, (2.43b)

and, provided that c>c− `>1 `1 > 0, Ā>Ā is positive definite and

`22 = c>c− `>1 `1. (2.43c)

Note. to solve A>Ax = b we do

PLL>P>x = b (2.44)

and we set x = Py so we then need to solve

PLL>y = b⇔ LL>y = P>b. (2.45)

The permuted Cholesky factor of Ā>Ā = P̄ L̄L̄>P̄> is

L̄ =

[
L1

`>1 `2

]
, (2.46)

and the corresponding permutation matrix is

P̄ =

[
P

1

]
. (2.47)
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The computational cost of this update is n2 + 3n.

Let us now insert a column in A, so we shall define the matrix

Ã =
[
A1:κ c Aκ+1:n

]
, (2.48)

where κ ∈ N[1,n]. There is then a permutation matrix P̃ so that ÃP̃> = [A c ]. It is then easy to

update the factorisation

(ÃP̃ )>(ÃP̃ ) = L̃L̃>, (2.49)

⇔ Ã>Ã = P̃ L̃L̃>P̃> (2.50)

which is the updated Cholesky factorisation of Ã>Ã with permutation matrix P̃ .

Now we are going to insert many columns, recursively, at various positions in Ã. Essentially,

we are going to update a permuted Cholesky factorisation by inserting a column in any position

in A, so the updated matrix becomes

Ā =
[
A1:κ c Aκ+1:n

]
(2.51)

There is a permutation matrix P̃ so that

ĀP̃ =
[
A c

]
, Ã (2.52)

Say we have A>A = PLL>P>. We can then compute a permuted Cholesky factorisation for

Ã>Ã,

Ã>Ã = P̄ L̃L̃>P̄> (2.53a)

⇔ P̃>Ā>ĀP̃ = P̄ L̃L̃>P̄> (2.53b)

⇔ Ā>Ā = P̃ P̄ L̃L̃>P̄>P̃>, (2.53c)

which is the permuted Cholesky factorisation of Ā>Ā with permutation matrix P̃ P̄ .

Let now A ∈ IRm×n be a given matrix and α be a collection of column indexes of A, and

Aα ∈ IRm×|α| and we know the Cholesky factorisation of A>αAα = LαL
>
α . Let now ᾱ = α ∪ {α∗},

i.e., the α∗-th column of A is added to Aα to form the new matrix

Aᾱ =
[
Aα Aα∗

]
. (2.54)

Having augmented Aα we can now update the factorisation of A>αAα and compute an Lᾱ such

that

A>ᾱAᾱ = LᾱL
>
ᾱ . (2.55)
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Efficient line search. Define f(x) = 1
2‖Ax − y‖

2 and g(x) = λ‖x‖1. The forward-backward

envelope of F (x) = f(x) + g(x) is given by

Fγ(x) = f(x)− γ

2
‖∇f(x)‖2+gγ(x− γ∇f(x)), (2.56)

where gγ is the Moreau envelope of g(x) = λ‖x‖1 given by

gγ(x) =
n∑
i=1

hγ(xi), (2.57)

where hγλ is the Huber function with paramter γλ

hγλ(t) =

 t2

2γ , if |t|≤ γλ

|t|−γλ
2 , otherwise

(2.58)

Notice that

f(x+ τd)− f(x) =
τ2

2
‖Ad‖2+τ〈Ax− y,Ad〉 (2.59)

Furthermore, we have ‖∇f(x)‖2= ‖A>(Ax− y)‖2 and

‖∇f(x+ τd)‖2−‖∇f(x)‖2= τ2‖A>Ad‖2+2τ〈A>(Ax− y), A>Ad〉 (2.60)

Now for given x and d define the following quantities

ξ = Ad (2.61a)

ψ = A>ξ (2.61b)

r = Ax− y (2.61c)

π = A>r. (2.61d)

In the Newton algorithm we update x as follows

x← x+ τd, (2.62)

and r and π are updated as follows so that we don’t need to recompute them and we don’t have

to perform any matrix-vector products

r ← r + τξ (2.63a)

π ← π + τψ (2.63b)

We then have

f(x+ τd)− f(x) =
τ2

2
〈ξ, ξ〉+ τ〈r, ξ〉 (2.64)
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and

‖∇f(x+ τd)‖2−‖∇f(x)‖2= τ2〈ψ,ψ〉+ 2τ〈π, ψ〉 (2.65)

Now, overall we have

Fγ(x+ τd)− Fγ(x) =
τ2

2
〈ξ, ξ〉+ τ〈r, ξ〉 − γ

2

(
τ2〈ψ,ψ〉+ 2τ〈π, ψ〉

)
+ gγ(x+ τd− γ∇f(x+ τd))− gγ(x− γ∇f(x))

= τ (〈r, ξ〉 − γ〈π, ψ〉) + τ2 · (〈ξ, ξ〉 − γ〈ψ,ψ〉) /2

+ gγ((x− γπ) + τ(d− γξ))− gγ(x− γπ) (2.66)

Now let

u = x− γπ (2.67)

v = d− γψ (2.68)

Then

Fγ(x+ τd)− Fγ(x) = β0 + β1τ + β2τ
2 + gγ(u+ τv), (2.69)

where

β0 = −gγ(u), (2.70a)

β1 = 〈r, ξ〉 − γ〈π, ψ〉, (2.70b)

β2 = (〈ξ, ξ〉 − γ〈ψ,ψ〉) /2, (2.70c)

and u in the end is updated as

u← u+ τv. (2.71)

Let us define Rγ(x) = x − proxγg(x − γ∇f(x)). This operator is useful for the computation

of the gradient of the forward barckward envelope according to

∇Fγ(x) = γ−1(In − γA>A)Rγ(x) (2.72)

Vector Rγ(x) is evaluated as follows

(Rγ(x))α = γ(πα + λ sign(xα)) (2.73a)

(Rγ(x))αc = xαc (2.73b)

Simulations. In this section we apply the proposed methodology to various data streams and

we compare it to standard algorithms such as FISTA, ADMM [29] and the interior point method

of Kim et al. [14], also known as the L1LS method. In our approach we used the continuation
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Figure 2.4: Average runtimes varying the window size. FBN: proposed forward-backward New-
ton method, L1LS [14], ADMM [18], FISTA [16] for sparsity equal to 0.1.

strategy described above with η = 0.5 and an Armijo line search. The required tolerance for the

termination of all algorithms was set to 10−8.

We observed that after decompressing the first window, the number of iterations required

for convergence was remarkably low (in most cases, around 4 iterations for each window were

sufficient). It should be highlighted that after the first decompression, the computational cost

of the algorithm decreases significantly. This is first because of the aforementioned warm-start

and second because the value of the residual r = Ax − y is updated by using only vector-

vector operations. Updating A(i+1) ← A(i)P and x
(i+1)
0 ← P>x̂(i) and using the fact that P is

orthogonal, we have that r(i+1) = A(i+1)x
(i+1)
0 − y(i+1) = r(i) + y(i) − y(i+1).

A stream of total lengthN = 106 was generated as follows: its entries are drawn from Ber(S),

where S is average stream sparsity. Then, the non-zero entries are taken uniform in [−2,−1] ∪
[1, 2] and multiplied by 8σ

√
2 logN (dynamic range assumption [13]), based on selected noise

variance σ2. We then select window size n, let s = nS,m = 4s, and generate sampling matrix A

with i.i.d. entries N (0, 1/m). For LASSO, we pick λ = 8σ
√

2 logN following [13].

In Figures 2.4 and 2.5 we observe that the proposed algorithm outperforms all state-of-the-

art methods by an order of magnitude.

The results presented in Figure 1 were obtained for a fixed sparsity 10% and w(i) being a

zero-mean normally distributed noise with variance 0.01. In Figure 2, for the same noise level

and using a window of size n = 5000 we show how the runtime is affected by the sparsity of the

data stream.

The remarkable speed-up of the proposed algorithm is a result of two factors: first it is the

local quadratic convergence rate of the Newton method in combination with the warm start.

Second, several terms such as the residual (i.e., the term Ax− y) and certain Cholesky factor-

izations can be passed to the next instance of FBN; this saves a considerable number of FLOPS

at every iteration.
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Figure 2.5: Average runtimes varying the sparsity of the data stream for a window size of 8000.
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Figure 2.6: Average runtimes varying σ2 (i.e., the signal-to-noise ratio) using a constant window
size of 8000 and a constant sparsity 0.05. Reported runtimes are averaged over 50 measure-
ments.
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Figure 2.7: Convergence of the primal objective to its optimal value with respect to runtime for
a random problem with m = 600, n = 5000 a sparse matrix A with density 1%. The solution was
determined in 10.6ms and the FP residual was 1.2265 · 10−14.

Conclusions We have proposed an efficient method for successively decompressing the en-

tries of a data stream sampled using Recursive Compressed Sensing [11]. We have proposed

a second-order proximal method for solving LASSO with accelerated convergence over state-

of-art methods. Our scheme is very efficient as each iteration nails down to solving a linear

system of low dimension, which we may further avoid by a single Cholesky factorization at a

pre-processing step. We have tested our algorithm against the state-of-art for various windows

sizes and sparsity patterns; our experiments depict notable speed-up which may renders RCS

suitable for an online implementation under stringent time constraints. Finally, it should be noted

that all reported results are performed in MATLAB, yet the proposed method exhibits a ten-fold

speed-up compared to all existing approaches. We believe that an optimized C or C++ imple-

mentation is likely to accelerate to lead to an even higher speed-up.

2.1.2 Online identification using streaming data

Online identification on a stream of data can be performed along the lines of the methodology

we proposed for compressed sensing since, in some sense, LASSO-based identification is a

problem dual or converse to that of compressed sensing. Unlike compressed sensing, in iden-

tification the objective is to derive a simplified representation of a multitude of data where the

measurements outnumber the parameters of the model. A model, therefore, can be seen as a

simplified and coarse representation of a set of data.

In the case of identification of linear models, the output ŷk of the model at time k is repre-

sented by the auto-regressive with exogenous input form:

ŷk =

Ny∑
i=1

αiyk−i +

Nu∑
i=1

βiuk−i, (2.74)
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whereNy andNu are the output and input history lengts — all past values from yk−Ny to yk−1 and

from uk−Nu up to uk−1 are used to predict the output at time k. Given an N -length sequence of

observed input/output pairs {uk, yk}Nk=1, the considered identification problem aims at estimating

the model parameters αi and βi describing the relationship between the observed input/output

sequence.

The input and output lags Nu and Ny have to be a-priori specified by the user, and this

represents a critical step in the estimation of the ARX model (2.74) from data. In fact, in order

to adequately capture the underlying dynamic dependence of the current output yk on the past

inputs and outputs, large values for Nu and Ny are typically chosen. On the one hand, this

increases the flexibility of the model, thus avoiding a structural model bias. At the same time,

this leads to over-parameterized models, which tend to overfit the training data, leading to poor

generalization on unseen data. This is a well-known concept in machine learning and system

identification [30], commonly referred as bias-variance tradeoff.

Thus, in order to select the ARX model structure (i.e., the model parameters αi and βi in

(2.74) which are actually needed for an accurate approximation of the underlying relationship

among the variables), a LASSO-based identification problem can be formulated, where the

fitting error between the observed output yk and the model output ŷk is minimized, along with a

regularization term penalizing the `1-norm of the model parameters. Such a penalty is used to

minimize the number of nonzero model parameters, thus selecting the model structure directly

from the data. It worth remarking that, similarly to the compressed sensing case, once the

model structure is selected solving a LASSO problem, the non-zero model parameters αi and

βi should have re-estimated solving a least-squares problem, without any regularization.

In the following paragraph, we provide technical details on model structure detection (through

LASSO) using a buffer of data (i.e., a moving window). This relies on the principle that old data

become outdated, therefore, the system dynamics should only be determined by recent data.

The window length is a tuning knob of the proposed methodology, and it should be chosen to

balance the tradeoff between the speed of adaptation to parameter variation and insensitivity

to noise. In fact, a large window length uses the long memory of data and it provides a robust

but slowly convergent estimate, while a smaller window raises the level of adaptation but also

increases the sensitivity to noise. We will also explain how the window length can be extended

dynamically and during runtime. Again, we will follow an approach based on a stream of data in

contrast to the batch approach where modelling takes place only offline.

Model order selection. First, let us introduce the regressor vector:

ak =
[
yk−1 · · · yk−Ny uk−1 · · · uk−Nu

]> ∈ Rna , (2.75)

with na = Ny +Nu. By stacking the model parameters αi and βi in a vector θ ∈ Rna :

θ =
[
α1 · · · αNy β1 · · · βNu

]>
, (2.76)
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the ARX model in (2.74) can be written in the compact form:

ŷk = a>k θ. (2.77)

To detect the structure (i.e., non-zero parameters) of the ARX model (2.74), we use input/out-

put pairs {uk, yk} from time k −max{Ny, Nu} to time k + H, where H represents the length of

the rolling window. Based on these data, we can construct the regressor matrix:

A =


yk−1 yk−2 . . . yk−Ny uk−1 uk−2 . . . uk−Nu

yk yk−1 . . . yk−Ny+1 uk uk−1 . . . uk−Nu+1

... · · ·
...

...
...

...

yk+H−1 yk+H−2 . . . yk+H−Ny uk+H−1 uk+H−2 . . . uk+H−Nu

 =


a>k
a>k+1

...

a>k+H

 ,
(2.78)

and stack the observed outputs in the vector

b =
[
yk yk · · · yk+H

]>
. (2.79)

It is always recommended that H > Ny + Nu = na (at least). This said, matrix A will be

always a tall matrix. Then, the LASSO problem for support detection is formulated as follows

minimizeθ
1

2
‖Aθ − b‖2+λ‖θ‖1. (2.80)

The term ‖Aθ − b‖2 aims at minimizing the norm of the prediction error ŷk − yk, while λ‖θ‖1
tends to enforce sparsity in the parameter vector θ. The hyper-parameter λ > 0 thus control

the tradeoff between data fitting and model complexity, and it can be tuned by the user through

cross-validation.

Once problem (2.80) is solved, the model structure of the ARX model (2.74) is then se-

lected by getting rid of all parameters θi such that |θ?i |< ε, where θ? is the optimizer of problem

(2.80) and ε is a (small) threshold. Having detected the model structure, the non-zero model

parameters of the vector θ? are then re-estimated by solving the least-square problem

minimizeθ̄
1

2
‖Āθ̄ − b‖2, (2.81)

where Ā and θ̄ are the reduced-dimension variants of A and θ using only the indices corre-

sponding to the non-zero parameters in θ?.

Using a forgetting factor. Instead of using a rolling window, it often makes sense to perform

the training using a forgetting factor — more recent data are to be taken into account with

higher confidence than older ones as the system dynamics may have changed. In that case,

DISIRE D2.1 v1.2.pdf © DISIRE Consortium Page 30 of 174



H2020-SPIRE-2014 DISIRE

the LASSO problem we formulate is

minimize
1

2
‖ẽ(θ)‖22+λ‖θ‖1, (2.82)

where now instead of e(θ) = Aθ − b we have ẽ(θ) being a vector whose j-th entry is

ẽj = κj

yk+j −
Ny∑
i=1

αiyk+j−i −
Nu∑
i=1

βiuk+j−i

 , (2.83)

with κ ∈ (0, 1) being the forgetting factor. Alternatively, we may use the fact that every symmetric

positive definite matrix Q defines a norm as follows ‖x‖2Q= x′Qx, to recast the above problem

as

minimize
1

2
‖Aθ − b‖2Q+λ‖θ‖1, (2.84)

where Q is the matrix

Q =



1

κ

κ2

. . .

κH


. (2.85)

2.1.2.1 Implementation as a toolbox

The forward-backward Newton envelope algorithm which we proposed is available as an open-

source toolbox and it is available online at github.com/alphaville/DISIRE-data-driven (In partic-

ular, see the file lasso/FBNewtonL1LS.m which exports its functionality via the simple interface

result = FBNewtonL1LS(A, b, lambda0, opt)). The code is well-structured and thoroughly

documented and tested with unit tests.

2.1.3 PWA regression

2.1.3.1 Identification of PWARX models

An extension of the ARX models in (2.77) is given by PieceWise Affine autoRegressive with

eXogenous inputs (PWARX) models, which provide simple yet flexible structures for describing

the behavior of nonlinear and time-varying systems.

The output ŷk of a PWARX model is given by a PieceWise Affine (PWA) map f of the current

regressor ak (defined in eq. (2.75)), i.e.,

ŷk = f(ak) =



[
1 a>k

]>
θ(1) if ak ∈ A1,

...[
1 a>k

]>
θ(s) if ak ∈ As,

(2.86)
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where s ∈ N denotes the number of (affine) submodels defining the PWA function f , and θ(i) ∈
Rna+1 are real parameters. The regressor ak is assumed to belong to a set A ⊆ Rna , denoted

as regressor space. The sets Ai (i = 1, . . . , s) in (2.86) are polyhedra that form a complete

polyhedral partition2 of the regressor space A. Each polyhedron Ai is defined by the linear

inequalities

Ai
.
= {a ∈ Rna : Hia ≤ Di} , (2.87)

with Hi and Di being real-valued matrices.

Problem statement. Given a set of input/output observations {uk, yk}Nk=1 generated by a dy-

namical system, PWA regression aims at finding a PWA function f as in (2.86) describing re-

lationship between the observed input/output sequence. Note that estimating a PWARX model

f from data requires (i) choosing the number of submodels s, (ii) computing the parameter

vectors {θ(i)}si=1 that characterize the local affine models of the PWA map f , and (iii) finding

the polyhedral partition {Ai}si=1 of the regressor space A where those local affine models are

defined.

When choosing the value of s, one must take into account the tradeoff between data fitting

and model complexity. For small values of s, the PWA map f cannot accurately capture the

nonlinear and time-varying dynamics of the system. On the other hand, increasing the number

of local affine submodels also increases the degrees of freedom in the description of the PWA

map f , which may cause overfitting and poor generalization to unseen data (i.e, the final esti-

mate is sensitive to the noise corrupting the observations), besides increasing the complexity

of the estimation procedure and of the resulting PWA model. In the PWA regression algorithm

described in the following, we assume that s is fixed by the user. The value of s can be cho-

sen through cross-validation based procedures, with a possible upper-bound dictated by the

maximum tolerable complexity of the estimated model.

Contribution. We device a novel two-stage approach for identification of PWA functions. The

main idea of the developed algorithm is to first process the observed regressor/output pairs

sequentially and assign each pair to the affine submodel that is most compatible to it. At the

same time, while doing the assignment of a pair, the parameters of the corresponding sub-

model are updated via a recursive least-squares techniques. The second stage starts once

all the observations have been classified: the regressor domain is partitioned into polyhedral

regions through a piecewise linear separator, which is computed by a regularized piecewise-

smooth Newton method, derived from the one proposed in [31]. The method is alternative to

(and more efficient than) the classical robust linear programming approach of [32] and does not

involve smooth approximations as in the algorithm proposed in [33]. In addition, an averaged

stochastic gradient descent algorithm is proposed to solve the same problem recursively. This

latter method is particularly appealing for on-line identification and adaptation of the PWA map,

as it processes one data sample at the time. Overall, we show that the advantage of the pro-

2A collection {Ai}si=1 is a complete partition of the regressor domain A if
⋃s
i=1Ai = A and

◦
Ai ∩

◦
Aj = ∅, ∀i 6= j,

with
◦
Ai denoting the interior of Ai.
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posed PWA regression algorithm over other existing methods available in the literature [34–41]

is twofold: computationally very effective for offline learning, very suitable for online learning.

2.1.3.2 Identification algorithm

Technical details of the developed algorithm for PWA regression are provided in this paragraph.

As already mentioned, the proposed approach consists of two stages:

S1. The simultaneous clustering of the regressor vectors {ak}Nk=1 and estimation of the pa-

rameter matrices θ(1), . . . , θ(s) describing the PWA map in Eq. (2.86). This is performed

recursively, by processing the training pairs {ak, yk} sequentially, and could be done either

offline (on a batch of data), or online, while data are acquired in real-time;

S2. The computation of a polyhedral partition of the regressor space A through an efficient

multi-class linear separation method. This stage is performed after stage S1, and it can

be performed either offline (batch) via a Newton-like method, or online (recursively) via an

averaged stochastic gradient descent algorithm.

Iterative clustering and parameter estimation. Stage S1 is carried out as described in Algo-

rithm 2. The algorithm is an extension to the case of multiple linear regressions and clustering of

the (computationally very efficient) approach proposed in [42] for solving recursive least squares

problems using inverse QR decomposition.

Algorithm 2 requires an initial guess for the parameter matrices θ(i) and cluster centroids ci,

i = 1, . . . , s. Zero matrices θ(i), randomly chosen centroids ci, and identity centroid covariance

matrices Ri are a possible choice. In alternative, if Algorithm 2 can be executed in a batch

fashion on a subset of data, one can initialize the parameter matrices θ(1), . . . , θ(s) all equal to

the best linear model

θ(i) ≡ arg min
θ

N∑
k=1

‖yk − [1 a>k ]>θ‖22, ∀i = 1, . . . , s (2.90)

that fits all data, and classify the regressors {ak}Nk=1 through k-means clustering, to compute

the cluster centroids and the centroid covariance matrices. Otherwise, the initial guess for the

parameters could be obtained executing Algorithm 2 without the first term in (2.88) and updat-

ing the cluster centroids and covariance matrices only once all the data have been classified.

Clearly, the final estimate of the parameter matrices θ(1), . . . , θ(s) and of the clusters C1, . . . , Cs
depends on their initial values. When working offline on a batch of identification data, estima-

tion quality may be improved by repeating Algorithm 2 iteratively, by using its output as initial

condition for its following execution.

After computing the estimation error ei(k) for all models i at Step 2.1, Step 2.2 picks up the

“best” mode i(k) to which the current sample ak must be associated with, based on a tradeoff

between reducing the prediction error ei(k) and penalizing the distance (weighted by matrix

R−1
i ) between ak and the corresponding centroid ci.

Step 2.4 updates the parameter matrix θ(i(k)) associated to the selected mode i(k) using

the recursive least-squares algorithm of [42] based on inverse QR factorization. Note that only
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Algorithm 2 Recursive clustering and parameter estimation algorithm
Input: Sequence of observations {ak, yk}Nk=1, desired number s of modes, noise covariance

matrix Λe; initial condition for matrices θ(i), cluster centroids ci, and centroid covariance matrices
Ri, i = 1, . . . , s.

1. let Ci ← ∅, i = 1, . . . , s;
2. for k = 1, . . . , N do

2.1. let ei(k)← yk − θ(i)
[

1
ak

]
, i = 1, . . . , s;

2.2. let

i(k)← arg min
i=1,...,s

(ak − ci)>R−1
i (ak − ci) + ei(k)>Λ−1

e ei(k); (2.88)

2.3. let Ci(k) ← Ci(k) ∪ {ak};
2.4. update the parameter matrices θ(i(k)) using the inverse QR factorization approach

of [42];
2.5. let

δci(k) ←
1∣∣Ci(k)

∣∣(ak − ci(k));

2.6. update the centroid ci(k) of cluster Ci(k)

ci(k) ← ci(k) + δci(k); (2.89)

2.7. update the centroid covariance matrix Ri(k) for cluster Ci(k)

Ri(k) ←
∣∣Ci(k)

∣∣− 2∣∣Ci(k)

∣∣− 1
Ri(k) + δci(k)δc

>
i(k) +

1∣∣Ci(k)

∣∣− 1

[
ak − ci(k)

] [
ak − ci(k)

]>
;

3. end for;
4. end.

Output: Estimated matrices θ(1), . . . , θ(s), clusters C1, . . . , Cs.
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the parameters of the matrix θ(i(k)) associated to the selected mode i(k) are updated at time k,

while the parameters associated to the other modes are not.

It is worth remarking that a possible choice for the noise covariance matrix Λe is Λe = I

(i.e., the regression errors are not weighted in (2.88)). Alternatively, if Algorithm 2 is executed

in a batch fashion and iteratively repeated by using the output as initial condition for the next

execution, an estimate Λ̂e of Λe can be computed at the end of each execution as the sample

covariance of the modeling error, i.e.,

Λ̂e =
1

N

s∑
i=1

N∑
k = 1

ak ∈ Ci

(
yk − [1 a>k ]>θ(i)

)(
yk − [1 a>k ]>θ(i)

)>
.

Partitioning the regressor space. When one is interested in getting also the partition {Ai}si=1,

besides the affine models θ(i) and centroids ci identified by Algorithm 2, the clusters {Ci}si=1 must

be separated via a multicategory discrimination algorithm. We propose here a variation of the

discrimination technique of [32] to partition the regressor space that is much more efficient from

a computational point of view, especially when dealing with a large number N of data points.

For i = 1, . . . , s, let Mi be a mi × na dimensional matrix (with mi denoting the cardinality

of cluster Ci) obtained by stacking the regressors a>k belonging to Ci in its rows. The piecewise

affine multicategory discrimination problem aims at computing a (convex) piecewise affine sep-

arator function φ : Rna → R discriminating between the clusters C1, . . . , Cs. The piecewise affine

separator φ is defined as the maximum of s affine functions {φi(a)}si=1, i.e.,

φ(a) = max
i=1,...,s

φi(a). (2.91)

The affine functions φi(a) are described by the parameters ωi ∈ Rna and γi ∈ R, namely:

φi(a) =
[
a> − 1

] [ ωi

γi

]
, (2.92)

and, in case of piecewise linearly separable clusters, they should satisfy the inequality con-

straints

[Mi − 1mi ]
[
ωi

γi

]
> [Mi − 1mi ]

[
ωj

γj

]
, (2.93)

i, j = 1, . . . , s, i 6= j,

or, equivalently,

[Mi − 1mi ]
[
ωi

γi

]
≥ [Mi − 1mi ]

[
ωj

γj

]
+ 1mi , (2.94)

i, j = 1, . . . , s, i 6= j.
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The piecewise-affine separator φ thus satisfies the conditions:
φ(a) =

[
a> − 1

] [
ωi

γi

]
, ∀a ∈ Ci, i = 1, . . . , s

φ(a) ≥
[
a> − 1

] [
ωj

γj

]
+ 1, ∀a ∈ Ci, i 6= j.

(2.95)

Rather than solving a linear program as in [32], we determine {ωi, γi}si=1 by solving the convex

unconstrained optimization problem

min
{ωi,γi}si=1

λ

2

s∑
i=1

(
‖ωi‖22+(γi)2

)
+ (2.96)

s∑
i=1

s∑
j = 1
j 6= i

1

mi

∥∥∥∥([Mi − 1mi ]
[
ωj−ωi
γj−γi

]
+ 1mi

)
+

∥∥∥∥2

2

,

where λ ≥ 0 is an `2-regularization term (no regularization in case λ = 0).

Problem (2.96) generates a piecewise-affine function that minimizes the (averaged) squared

2-norm of the violation of the inequalities (2.94). The problem is solved by using a regularized

piecewise-smooth Newton method with Armijo’s line search similar to the one proposed in [31]

for functions g : Rnξ → R of the form

g(ξ) =
λ

2
‖ξ‖22+

ng∑
j=1

‖gj(ξ)+‖22, (2.97)

where gj : Rnξ → R are convex and twice continuously differentiable functions. In particular, we

exploit the linearity of functions gi’s. In fact, for the special case of solving Problem (2.96), the

optimization vector is ξ = [(ω1)> . . . (ωs)> γ1 . . . γs]> ∈ Rnξ , nξ = s(na + 1), and gj ’s are affine

functions:

gj(ξ) = t>j ξ + rj , j = 1, . . . , ng, (2.98)

where ng = N(s − 1) and tj ∈ Rnξ , rj ∈ R are easily obtained from (2.96) as a function of

matrices {Mi}si=1 and coefficients {mi}si=1. By letting

T = [t1 . . . tng ]
>, R = [r1 . . . rng ]

>, (2.99)

given a vector ξ ∈ Rnξ , let

I(ξ) = {i ∈ {1, . . . , ng} : Tiξ −Ri > 0}. (2.100a)

Then,

g(ξ) =
λ

2
ξ>ξ +

∑
i∈I(ξ)

(Tiξ −Ri)2 (2.100b)

∇g(ξ) = λξ + T >I(ξ)(TI(ξ)ξ −RI(ξ)) (2.100c)

∇2g(ξ) = λI + T >I(ξ)TI(ξ) = λI +
∑
i∈I(ξ)

T >i Ti (2.100d)
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are, respectively, the function to minimize, its gradient, and its generalized Hessian at ξ.

The proposed approach to solve (2.96) is summarized in Algorithm 3. The algorithm uses

the solution d of the linear system

(∇2g(ξ) + δ(ξ)I)d = −∇g(ξ) (2.101)

at the current ξ as a search direction, where δ(ξ) = ζ‖∇g(ξ)‖ and ζ ∈ (0, 1). Due to the special

structure of ∇2g in (2.100d), the linear system (2.101) is solved at Steps 5.1–5.2 as the least

squares problem

min
d

1

2

∥∥∥∥∥∥
[

TI(ξ)√
λ+ δ(ξ)Inξ

]
d+

 TI(ξ)ξ −RI(ξ)
λ√

λ+δ(ξ)
ξ

∥∥∥∥∥∥
2

2

(2.102)

using the QR factorization of
[

TI(ξ)√
λ+δ(ξ)Inξ

]
.

Note that since ∇g(ξ) > 0 during iterations, δ(ξ) is also positive, and therefore R is full

column rank, so that the upper-triangular linear system in Step 5.2 is always solvable.

A good initial guess for ξ ∈ Rn can be obtained by running Algorithm 3 first on decimated

clusters, that is on maximum N̄i regressors ak per cluster and therefore N̄ =
∑s

i=1 N̄i � N

regressors, then use the result as the new initial condition in Algorithm 3 for the full problem with

N regressors.

Numerical experiments have shown that allowing a varying ζ = ζ0
min{1,‖∇g‖}
‖∇g‖ , where 0 <

ζ0 � 1, reduces the number of iterations and prevents excessive regularization in (2.101) when

‖∇g‖ is large. Moreover, while setting λ > 0 complicates the numbers of operations required by

the algorithm at each iteration (in particular to compute (2.103)) and bias the solution, it leads

to a smaller number k of iterations, and overall to a reduced computation time.

Recursive multicategory discrimination via on-line convex programming. As an alterna-

tive to Algorithm 3, or in addition to it for refining the partition φ on line based on streaming

data, we introduce a recursive approach to solve problem (2.96) based on techniques of on-line

convex programming.

Let us treat the data-points a ∈ Rna as random vectors and assume that an oracle function i :

Rna :→ {1, . . . , s} exists that to any a ∈ Rna assigns the corresponding mode i(a) ∈ {1, . . . , s}.
Function i implicitly defines clusters in the data-point space Rna . Let us also assume that the

following values

πi = Prob[i(a) = i] =

∫
Rna

δ(i, i(a))p(a)da

are known for all i = 1, . . . , s, where δ(i, j) = 1 if i = j or zero otherwise, i, j ∈ {1, . . . , s}. Each

value πi represents the relative “volume” of cluster i, where clearly

s∑
i=1

πi =

∫
Rna

s∑
i=1

δ(i, i(a))p(a)da =

∫
Rna

p(a)da = 1.

Problem (2.96)–(2.97) can be generalized to the following unconstrained convex stochastic
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Algorithm 3 Piecewise-smooth Newton method for solving the piecewise affine multicategory
discrimination problem (2.96)

Input: Regressors {ak}Nk=1, clusters Ci, i = 1, . . . , s; scalars σ ∈ (0, 1/2), ζ ∈ (0, 1); `2-
regularization term λ ≥ 0; initial guess ξ ∈ Rn; maximum number K of iterations; tolerances
gtol > 0 and δtol > 0.

1. Initialize matrices Mi ∈ Rmi×na , whose rows are the transposed regressors ak ∈ Ci,
i = 1, . . . , s; nξ ← s(na + 1), ng ← N(s− 1); define T , R as in (2.98)–(2.99), j = 1, . . . , ng;

2. k ← 0;
3. c← T ξ −R; I ← {i ∈ {1, . . . , ng} : ci ≥ 0};
4. g ← c>I cI + λ

2 ξ
>ξ; ∇g ← T >I cI + λξ; δ ← ζ‖∇g‖;

5. while g > gtol and δ > δtol and k < K do
5.1. (Q,R)← QR factorization of matrix

[ TI√
λ+δInξ

]
;

5.2. solve the upper-triangular linear system

R{1,...,nξ}d =− (Q{1,...,|I|},{1,...,nξ})
>cI

− λ

λ+ δ
(Q{|I|+1,...,|I|+nξ},{1,...,nξ})

>ξ; (2.103)

5.3. α← 1; q ← T d; ξα ← ξ + d;
5.4. Iα ← {i ∈ {1, . . . , ng} : c+ q ≥ 0};
5.5. gα ← (cIα + qIα)>(cIα + qIα) + λ

2 ξ
>
α ξα;

5.6. while gα > g + ασ∇g>d do
5.6.1. α← 1

2α; ξα ← ξ + αd
5.6.2. cα ← c+ αq;
5.6.3. Iα ← {i ∈ {1, . . . , ng} : cαi ≥ 0};
5.6.4. gα ← (cαIα)>cαIα + λ

2 ξ
>
α ξα;

5.7. end while;
5.8. ξ ← ξα; g ← gα; I ← Iα; c← cα;
5.9. ∇g ← T >Iαc

α
Iα

+ λξ; δ ← ζ‖∇g‖;
5.10. k ← k + 1;

6. retrieve ωi, γi, i = 1, . . . , s, from the solution ξ;
7. end.

Output: Coefficients ωi, γi, i = 1, . . . , s defining the piecewise affine separator φ in (2.91)–
(2.92).
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optimization problem

ξ∗ = min
ξ
Ea∈Rna [`(a, ξ)] +

λ

2
‖ξ‖22 (2.104a)

`(a, ξ) =
s∑

j = 1
j 6= i(a)

1

πi(a)

(
a>(ωj − ωi(a))− γj + γi(a) + 1

)2

+
(2.104b)

whose solution provides the piecewise affine multicategory discrimination function (2.91)–(2.92).

This aims at violating the least, on average over a, the condition in (2.94) for i = i(a). We

assume that the regularization parameter λ is such that λ > 0, so that the objective function

in (2.104a) is strongly convex.

When learning the discrimination function φ on-line, the data-points ak are acquired in real-

time and one would like to update φ recursively, without the need of storing all past data-

points a0, . . . , ak−1. We achieve this by solving Problem (2.104) by online convex optimization,

and in particular the averaged stochastic gradient descent method of [43] as proposed in [44]

(cf. also [45]), whose application to the piecewise affine multicategory discrimination problem

(2.104) is described in Algorithm 4.

The initial estimate ξ0 can be either zero (or any other value), or the result of the execution

of the batch Algorithm 3 on a subset of data preprocessed offline. The coefficients πi can also

be estimated from offline data, namely πi = mi
N , and also possibly updated while Algorithm 4

is running by updating mi(ak) ← mi(ak−1) + 1, N ← N + 1, and setting πi(ak) = mi
N . Numerical

experiments have shown however that constant and uniform coefficients π = 1
s work equally

well.

Simulations. Extensive numerical experiments have been carried out to assess the perfor-

mance of the proposed algorithm for PWARX system identification. The obtained results are

reported in the recently submitted papers [46] and [47] and in the accompanying technical re-

port [48]. Some of the obtained results are also reported in Table 2.1, which shows the CPU time

required to generate the polyhedral partition of the regressor space in an academic example,

with a 3-dimensional regressor space (i.e., na = 3). Specifically, the following four multicategory

discrimination algorithms are used to generate the partition of the regressor space:

• robust linear programming (RLP) [32]. The solver Gurobi is used to compute the solution

of the formulated linear programming problem;

• regularized piecewise-smooth Newton (RPSN) method (Algorithm 3);

• averaged stochastic gradient descent (ASGD) method (Algorithm 4), with λ = 10−5 and

ν0 = 0.01. The weights πi and the initial estimate ξ0 are computed by executing the batch

Algorithm 3 on the first 50 training samples. The remaining training samples are processed

recursively.

• multicategory support vector machines (MSVM) with linear kernels [49], implemented in

the MSVMpack 1.5 toolbox [50]. The performance of the MSVM approach is evaluated

only in relation to small/medium training sets, as large data sets take too long to be pro-

cessed.
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Algorithm 4 Averaged stochastic gradient descent algorithm for solving the piecewise affine
multicategory discrimination problem (2.104)

Input: Regressor flow a0, a1, . . .; cluster assignment function i : Rna → {1, . . . , s}; `2-
regularization term λ > 0; scalar ν0 ≥ 0; initial guess ξ ∈ Rn;

1. for k = 0, 1, . . . do:
1.1. compute the gradient ∇ξ`(ξk, ak) as follows:

1.1.1. Ik ← {j ∈ {1, . . . , s}, j 6= i(ak) : a>k (ωjk − ω
i(ak)
k )− γjk + γ

i(ak)
k ≥ −1};

1.1.2. set

∂`(ξk, ak)

∂
[
ωj

γj

] ← λ

[
ωjk
γjk

]
+

1

πi(ak)
× (2.105)



∑
j∈Ik

(
a>k (ωjk − ω

i(ak)
k )− γjk + γ

i(ak)
k + 1

) [−ak
1

]
if j = i(ak)(

a>k (ωjk − ω
i(ak)
k )− γjk + γ

i(ak)
k + 1

) [ ak
−1

]
if j 6= i(ak), j ∈ Ik

0 otherwise.

1.2. compute

νk ← ν0(1 + ν0λk)−
3
4 ; (2.106a)

µk ← 1/max{1, k − na, k − nξ}; (2.106b)
ξk+1 ← ξk − νk∇ξ`(ξk, ak); (2.106c)
ξ̄k+1 ← ξ̄k + µk(ξk+1 − ξ̄k); (2.106d)

1.3. retrieve ωik, γ
i
k, i = 1, . . . , s, from ξ̄k;

2. end.
Output: Coefficients ωik, γ

i
k, i = 1, . . . , s defining the piecewise affine separator φ in (2.91)–

(2.92) at each step k = 0, 1, . . ..
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Note that, for a large training set (i.e., N = 125000), Algorithms 3 and 4 are about 454x and

65200x faster, respectively, than the robust linear programming method of [32].

Conclusions. The strengths of the PWA regression approach developed during the project

and described above are its computational efficiency and the ability to be run both in a batch

and in a recursive way. Future research will be devoted to generalize the approach to piecewise-

nonlinear models (such as piecewise polynomial) by feeding regression data manipulated through

nonlinear basis functions to Algorithms 2, 3 and 4.

We have proposed a novel approach for the regression of PWA maps, that is successfully

employed for identi

fication of nonlinear dynamical systems in a PWARX form. The approach consists of two

stages: first, simultaneously cluster the observed regressors and adaptive estimate an affine

submodel for each cluster; second, solve a convex multi-category discrimination problem via a

regularized piecewise-smooth Newton method to determine a piecewise linear separator func-

tion and a polyhedral partition of the regressor space. This algorithm is more than two orders of

magnitude faster than classical piecewise affine multicategory discrimination methods available

in the literature. Furthermore, we have developed an averaged stochastic gradient descent algo-

rithm to solve the same problem recursively, by processing one data sample at the time, so that

the overall algorithm can be implemented in real-time, such as for adaptive control purposes.

Future research will be devoted to generalize the approach to piecewise-nonlinear models

(such as piecewise polynomial) by feeding regression data manipulated through nonlinear basis

functions to Algorithms 2, 3 and 4.

2.2 Control configuration selection

Prior to the synthesis of controller parameters for a system with several manipulated and con-

trolled variables, a low complexity control configuration is often selected [52]. In Control Config-

uration Selection (CCS), one approach is to simplify the complete system model by selecting the

most important input-output interconnections of the system and composing a reduced model

from the selected components. The resulting reduced model will then be used in the control

design, and all interconnections of the reduced model should be considered in the feedback

structure of the closed loop system.

N = 1250 N = 12500 N = 125000

RLP [32] 1.336 s 125 s 8541 s
RPSN (Algorithm 3) 0.257 s 1.762 s 18.8 s
ASGD (Algorithm 4) 0.0014 s 0.018 s 0.131 s
MSVM [51] 6.545 s 3870 s –

Table 2.1: CPU time required to partition the regressor space vs length N of the training set.
The computations are carried out on an i7 2.40-GHz Intel core processor with 4 GB of RAM
running MATLAB R2014b.
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When it comes to industry applications, the normal approach is to select control configura-

tions based on previous knowledge, intuition & common sense, rules of thumb, or even geo-

graphical proximity between sensors and actuators. Therefore control configurations are often

selected without the use of theoretical tools or systematic procedures.

By applying CCS methods on the processes under study, we will obtain indications on the

adequacy of the control configurations used at the processes prior to the start of DISIRE, as well

as an indication of the potential of creating controllers of larger complexity with e.g. an MPC

scheme.

2.2.1 Introduction to Control Configuration Selection using Interaction Measures

The selection of the reduced model in CCS is often performed with the use of the so-called

Interaction Measures (IMs), which include the popular Relative Gain Array (RGA) introduced by

Bristol in [53]. A limitation of the RGA is that it is only applicable in the design of decentral-

ized control configurations, where sensors and actuators are grouped in pairs and the loops are

closed using only Single-Input-Single-Output controllers. This limitation led to the later introduc-

tion of the gramian-based IMs in [54].

Whilst the RGA can be used for an initial analysis based on DC-gains, it is recommended to

complete the analysis with the so-called gramian-based IMs, which provide information based

on the dynamics of the model and can be used to design sparse control configurations. In the

automatic control framework, it is well understood that system gramians can be used to identify

the most significant portions of a system model, in terms of controllability and observability.

In DISIRE, we created a gramian-based IM named Prediction Error Index Array (PEIA),

which is based both on controllability analysis and on measuring the prediction error committed

by the model simplifications performed during CCS. The results are based on the use of the

H2-norm, which was first used in the Gramian-based IM known as Σ2 for quantifying the output

controllability [55]. This norm was further studied in [56], where additional interpretations of its

square value were derived, making it suitable for CCS. Based on these interpretations, methods

for CCS using weighted graphs were proposed in [57], in which the square of the H2-norm used

to determine the weights for the graph edges. We demonstrate in this report that using the

squared H2-norm to define an IM allows the selection of a reduced model in terms of the power

of the prediction error committed by a white Gaussian excitation signal.

PEIA has been created as synergy between DISIRE and the EU project OPTi. The results

presented in this document for linear systems have also been extended to nonlinear systems

using Volterra series. Volterra series are often used to generalize concepts for their application

on nonlinear systems and have been introduced in [58]. It will be pursued by LTU to use this

nonlinear theory for CCS in the future of DISIRE. A requirement for this purpose is the availability

of nonlinear process models in the shape of Volterra series.

In 2.2.2 we give the preliminaries on the RGA, and the extension of the RGA to the frequency

domain called DRGA is given in 2.2.3.
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2.2.2 Relative Gain Array

The RGA of a continuous process G(s) with equal number of inputs and outputs is defined as

RGA(G) = G(0)⊗G(0)−> (2.107)

where G(0)−> is the transpose of the inverse of G(0), and ⊗ denotes element by element

multiplication. The original definition of the RGA to squared systems was expanded for its

application on non-square plants with the use of the pseudo-inverse in [59].

Properties of the RGA
• The RGA is normalized, so the sum of all the elements of each row or column add up to

one.

• The RGA is scaling invariant.

• The RGA of a triangular or diagonal matrix is the identity.

Interpretation of the RGA In order to explain the reasoning about the pairing of the inputs

and outputs based on the steady-state RGA we will use the definition of RGA used by Bristol

in [53].

For each input-output pairing uj , yi, the DC gains in a multivariable system have to be eval-

uated in two extreme cases:

– All the other loops opened, with all the other inputs uk, ∀k 6= j kept constant. This is

equivalent to obtain the DC gain of the plant G(s) from the gij element.(
∂yi
∂uj

)
uk,∀k 6=j

= gij

– All the other loops closed, with all the other outputs yk,∀k 6= i kept constant in what is

assumed to be perfect control. A change in the input uj will yield a change in yi, but also

to a change in all the other outputs which are controlled under perfect control; the other

inputs uk,∀k 6= j will also change in order to compensate the variation of the outputs

yk,∀k 6= i, and this will lead to a new change in the observed output yi due to interaction.

Then, we evaluate: (
∂yi
∂uj

)
uk,∀k 6=j

= ĝij

The element λij of the RGA is then defined as

λij =
gij
ĝij

=
((∂yi)/(∂uj))uk,∀k 6=j
((∂yi)/(∂yi))yk,∀k 6=i

The RGA is related to the condition number of a plant [60], in such a way that large numbers

of the RGA are related to ill-conditioned systems, which are hard to control with decentralized

controllers.

Pairing rules of the RGA The pairing rules for the static RGA can be summarized as:
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– A value of 1 in λij means that the value of gij is not affected for the closing of the other

loops, so there is no interaction effects in the pairing uj − yi. Pairings with values of λ

close to one will be preferred.

– A value of λij close to 0, means that the input uj should not be used to control the output

yi.

– Pairings with negative values of the RGA should be avoided; a negative value in λij means

that the gain of the subsystem formed by the jth input and the ith output changes its sign

when all the other loops are closed.

– Pairings with large numbers in the RGA should be avoided; large numbers are related to

ill-conditioned plants, so in this case, some other control techniques may be considered.

Limitations of the RGA
– It is based on DC gains and therefore is not able to capture process dynamics in the

decision making. These process dynamics include the existence of time delays or non-

minimum phase zeroes. To deal with this limitation, several variants of the RGA have been

introduced, like the DRGA, ERGA or RNGA.

– The RGA is not directly applicable to systems with pure integrators, since these systems

have an infinite DC-gain. However, an alternative for these kind of systems have been

proposed [61–63].

– Inability to capture loop interactions in triangular structures.

A detailed description of the RGA as well as several examples can be found in [64].

2.2.3 Dynamic Relative Gain Array (DRGA)

Several authors created indicators under the name Dynamic RGA in order to obtain indications

in the frequency domain based on relative gains. The indicator discussed here is the straight-

forward approach of evaluating the RGA in the frequency domain, and can be used to design

control structures at any desired frequency [65]. The DRGA of a continuous process described

by a transfer function G(s) is:

DRGA(ω) = G(jω)⊗G(jω)−> (2.108)

The DRGA is a complex number and has a more obscure interpretation than that of the RGA:

it is usually preferred to use its magnitude as indicator due to the gain interpretation, however

only the sums of the rows or columns of the resulting complex array (or its real part) add up to

1. Moreover, by evaluating the magnitude alone, the sign of the DRGA is lost as an indicator,

which is often used to rule out certain input-output pairings.

The DRGA is sensitive to time delays. Time delays in continuous time systems can be

considered when computing the DRGA by using approximations (i.e., Padé).
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2.2.4 Prediction Error Index Array

This subsection introduces an IM for linear systems which gives indications based on the pre-

diction error of the reduced model selected during CCS.

Preliminaries on linear systems are first given, followed by the introduction of the new linear

IM named Prediction Error Index Array (PEIA). Later, the derivation of relationships of PEIA with

absolute and a relative measures of the prediction error are given.

2.2.4.1 Preliminaries on gramians and H2-norm

Assume a multivariable linear process with n inputs and m outputs described by the following

state space representation:

˙x(t) = Ax(t) +Bu(t)

y(t) = Cx(t)

where u ∈ IRn, y ∈ IRm and x ∈ IRp are the input, output and state vectors. The process can

alternatively be represented by the mutivariable transfer function G(s) = C(sI − A)−1B or by

the impulse response matrix g(t) which is calculated as the inverse Laplace transform of G(s).

The IM Σ2 has been defined in [55] as:

Σ2 =
||Gij ||2

m,n∑
k,l=1

||Gkl||2

where ||Gij ||2 is the H2 norm of Gij(s).

Different calculations of the H2-norm are:

||Gij ||2 =

√
1

2π

∫ ∞
−∞
|Gij(jω)|2dω =

√∫ 2π

0
g2
ij(τ)dτ

=
√

trace(B>j QiBj) =
√

trace(CiPjC>i )

where Pj is the controllability gramian related to the jth input, Qi is the controllability gramian

related to the ith input, Bj is the j-th row of B, and Ci is the i-th row of C, j is the imaginary unity,

and ω is frequency in rad/sec.

Pj =

∫ ∞
0

eAτBjB
>
j e

A>τdτ ; Qi =

∫ ∞
0

eA
>τC>i Cie

Aτdτ

The calculation of the integral in of the squared magnitude in the frequency domain gives the

interpretation of the squared H2-norm as the output energy when the input is exited with an

input signal with unitary flat power spectral density (psd). The calculation from the impulse

response gives an interpretation of the squaredH2-norm as the energy of the impulse response

of the system. The calculation through the gramians gives an interpretation in terms of output

controllability (see [55]).
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2.2.4.2 Definition of the linear Prediction Error Index Array.

The discussed interpretations indicate that it is appropriate to square the H2-norm when used

to quantify the significance of the input-output channels of a process. We therefore adapt the

original definition of Σ2, and define an IM named Prediction Error Index Array (PEIA) as:

PEIA =
||Gij ||22

m,n∑
k,l=1

||Gkl||22

=
||Gij ||22
||G||22

(2.109)

The name PEIA refers to the direct relationship of each element of this IA with the prediction

error committed when neglecting the corresponding input-output channel. This relationship will

be proven in Subsection 2.2.4.5.

In addition to the more direct interpretations with the use of the squaredH2-norm, the sum of

the individual metrics of the input-output channels in PEIA is equal to the metric of the complete

system: ∑
||Gij ||22= ||G||2

This property is a consequence of the gramian decomposition, and therefore the elements in

PEIA express the contribution of each input-output channel as a fraction of the global contribu-

tion. This property is preserved by the first introduced gramian-based IMs named Participation

Matrix and Hankel Interaction Index Array (see [54,66]), but not by Σ2.

To achieve a well-decoupled system with a diagonal sensitivity function, it is necessary that

the structure of the controller is the inverse of the plant. The control configuration is therefore

designed by selecting the most important input-output channels resulting in a model with a

reduced structure which can achieve a sufficiently close to diagonal sensitivity function. The

user can comprehend the amount of the total process dynamics that the reduced model is

reflecting by evaluating the closeness of the total contribution of the selected channels to 1,

which corresponds to 100%.

Details can be found in the literature on procedures and rules to follow during the selection

of a control configuration from an gramian-based IA [54]. Since this selection is often trivial from

the direct interpretation of the IA, no details are given in this report. The resulting configurations

in the examples are related to the simplest reduced model with a contribution larger than 70%.

This would be a preliminary configuration which has to be tested, leading to a possible redesign

in favor to a configuration with larger contribution.

2.2.4.3 Analysis using the H2-norm with the Prediction Error Index Array (PEIA)

The Prediction Error Index Array (PEIA) is an array which quantifies the importance of the input-

output channels. The sum of all the elements in this array equals 100%. It can be used to

select a reduced model with the most important input-output interconnections and base control

on that model. If you sum the contribution of all the selected input-output channels, you obtain a

measure (in %) of how much of the reduced model is able to capture the total process dynamics.

There are three different interpretations of the PEIA:
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• PEIA can be interpreted in terms of energy or power transfer. If we assume that the inputs

are excited by uncorrelated white noise of unit variance, then each of the numbers in the

PEIA is the energy transfer for each input-output channel in relation to the total energy

transfer. As an analogy, we can think of each of the input-output channels as being a pipe

which is able to transfer flows, and the value of the PEIA indicates the thickness of the

pipe, we would therefore choose the larger pipes for control and focus future modeling

efforts on them.

• PEIA can be interpreted in terms of output controllability.

• PEIA can be interpreted in terms of the prediction error committed when selecting a re-

duced model. Lets say that we select a subset of the input-output channels as reduced

model denoted by G∗, being the original model denoted as G. Assume that both G∗ and

G are excited by the same white noise sequence, and denote as y∗(t) and y(t) as the

outputs from these models. Then adding the PEIA value of the elements considered in G∗

is a relative measure of the energy of the prediction error y∗(t)− y(t)

2.2.4.4 Absolute measure of the prediction error.

This subsection aims to find a measure of the prediction error committed by the reduced model

selected during CCS, and relate it this measure to PEIA.

Denote by:

• Ĝ(ω): reduced model on which control will be based.

• ∆G(ω): model composed by the disregarded IO channels.

• ŷ(t) ∈ IRm,1 : output from the reduced model Ĝ.

• y∆(t)IRm,1 : output from the model composed by the disregarded IO channels in ∆G.

The prediction error is defined as the difference y∆ = y− ŷ, and the considered metric in the

prediction error is its average power.

P (y(t)− ŷ(t)) = lim
T→∞

1

2T

∫ T

−T
y>∆ · y∆dt

=

∫ ∞
−∞

trace(Sy∆y∆(f))df

where Sy∆y∆ ∈ IRm,m is the power spectral density (psd) of the prediction error y∆(t). The psd of

the output of a linear system can be expressed as a function of the psd of its input Suu, leading

to:

P (y(t)− ŷ(t)) =

∫ ∞
−∞

trace(∆G(−f) · Suu(f) ·∆G(f)>)df

We will assume at this step that the input ui(t) are uncorrelated sequences and have a flat
psd. We also assume that the input have been scaled in such a way that Suu(f) = I. Then, the
average power of the prediction error is:

P (y(t)− ŷ(t)) =
1

2π

∫ ∞
−∞

trace(∆G(−ω) ·∆G(ω)>)dω

= ||∆G||22=
∑
i,j

||∆Gij ||22
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Therefore, the squared H2-norm of the disregarded IO channels is the average power of the

prediction error when the input signals are uncorrelated sequences and have flat unitary psd.

For the case of continuous-time systems, an input signal with flat psd over all frequencies is

not realizable since it has infinite energy. A band limited noise with flat band in an interval [a, b]

can be used, leading to the following integral:

P (y(t)− ŷ(t)) =
1

π

∫ b

a
trace(∆G(−ω) ·∆G(ω)>)dω

which is aligned to the concept of frequency-limited H2-norm (see [67]), which was used in [68]

to design control configurations for a restricted set of frequencies.

2.2.4.5 Relative measure of the prediction error

A relative measure of the prediction error will be sought under the assumption that the inputs

are uncorrelated and have flat psd.
Start by relating the power of the output y to the power of ŷ and y∆.

P (y(t)) = lim
T→∞

1

2T

∫ T

−T
(y∆(t) + ŷ(t))> · (y∆(t) + ŷ(t))dt

= lim
T→∞

1

2T

∫ T

−T

(
y∆(t)>y∆(t) + ŷ(t)>ŷ + 2y∆(t)>ŷ(t)

)
dt

Each of the outputs [y∆(t)]i and [ŷ(t)]i from ∆G and G, are zero mean stochastic processes for

being the output of linear systems to a 0 mean stochastic input. Additionally [y∆(t)]i and [ŷ(t)]i

are clearly uncorrelated, since the structures of ∆G and G are complementary, and therefore

[y∆(t)]i and [ŷ(t)]i have contributions from different inputs. Therefore E([y∆(t)]i · [ŷ(t)]i) = 0,

and:

P (y(t)) = lim
T→∞

1

2T

∫ T

−T

(
y∆(t)>y∆(t) + ŷ(t)>ŷ

)
dt

= P (y∆(t)) + P (ŷ(t))

The average power of the output is then the power of the output from the reduced model plus

the average power of the output from the disregarded channels ∆G. A relative measurement of

the prediction error is constructed as:

P (y(t)− ŷ(t))

P (y(t))
=
||∆G||22
||G||22

=
∑
i,j

||∆Gij ||22
||G||22

(2.110)

The sum of the disregarded elements of the PEIA is then a relative measure of the average

power of the prediction error in relation to the average power of the original model when the

inputs are uncorrelated zero mean processes with flat psd.

Another possible measure to use is the ratio of the power of the output of the original model
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which is explained by the reduced model:

P (ŷ(t))

P (y(t))
=
∑
i,j

||Ĝij ||22
||G||22

= 1− P (y(t)− ŷ(t))

P (y(t)))
(2.111)

2.3 Sparse Control Using Convex Optimization Techniques

In this section, we introduce a method for CCS using convex optimization which finds a trade-off

between the achievable performance of the resulting configuration and its sparsity.

The relationship of the CCS to sparsity is that CCS be formulated as finding a low com-

plexity controller which minimizes the amount of interconnections between measurements and

actuators while achieving acceptable performance. Since the controller is often formulated as

a transfer function matrix which connects measurements with control actions, minimizing the

amount of the interconnections in the control system is equivalent to maximizing the sparsity of

the controller matrix.

In addition to the maximization of the controller sparsity, an important breakthrough of the

proposed method in comparison with the gramian-based IMs is the explicit use of closed-loop

performance in the selection of the control configuration.

Formulating the CCS problem as a convex problem is also important in terms of practical

implementation, even if this requires the use of approximations. This is due to the fact that CCS

is naturally a combinatorial problem which leads to the use of mixed integer linear programming,

where the achievable performance and complexity of all possible control configurations should

be evaluated. The best control configuration would be the one which results in a better trade-off

between complexity and achievable performance.

As example, the walking beam furnace from MEFOS which is considered in this project

has 7 actuators and 4 sensors. Considering at each of the sections the combustion oil and

combustion air as a single actuating pair for the design of the configuration, then the number of

possible configurations to test is in the order of 29 million. This number will dramatically increase

with the addition of the sensors which are under construction in DISIRE for the measurement of

local temperatures at the slabs.

For the theory described in this section,we consider a discrete-time system represented by

the equation:

y(t+ 1) =

N∑
r=0

Ar(t) · y(t− r) +

N∑
r=0

Br(t) · u(t− r) +

N+1∑
r=0

Wr(t)ω̇(t− r + 1) (2.112)

were y(t) ∈ IRm, u(t) ∈ IRn and ω(t) ∈ IRp+1 are the output, input and disturbance vectors at

time t, and Ar ∈ IRm×m, Br ∈ IRm×n and Wr ∈ IRm×p. For the formulation of LMIs for Lyapunov

stability, it is convenient to keep the same index r for the sets of matrices {Ar}, {Br} and {Wr}.
Note that this process equation allows to represent the output as a function of: i) the history

of the output (see Ar), ii) the history of the input (see Br) and iii) the history of the process

disturbances (see Wr).
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We assume a control law of the form:

u(t) =

Ns∑
s=1

Ks(t) · y(t− s) (2.113)

where the matrices Kr represent the linear dependance of the current control action from the

error history e(t).

We seek a convex formulation of the form:

{Kr} = arg min Γ({Ar}, {Br}, {Kp}) + λ · str({Kp}) (2.114)

s.t. R(Ar, Br,Kp) ≤ β (2.115)

where Γ is a performance function which is minimized, and str({Kp}) is a function which quan-

tifies the complexity of the controller configuration, λ is a regularization parameters which regu-

lates the trade-off in the cost function, N is the number of time samples which influence in the

process dynamics, and R(Ar, Br,Kp) ≤ β are a set of inequalities which can be formulated to

express e.g. stability. We seek that the set of constrains R formalize Lyapunov stability of the

closed loop system.

Each of the following sections formalizes a sub-problem which has to be resolved.

2.3.1 Find a convex performance function Γ(u(t), y(t))

The goal is to formulate a convex cost function of the manipulated variables u(t) inputs y(t). In
closed loop, u(t) and y(t) would be a function of the process disturbances ω(t), which would
be the exogeneous input to the closed loop process. Then we can choose an arbitrary convex
function Γ, like e.g., a quadratic cost. The first step is therefore to find a function relating the
process disturbances to the outputs and manipulated variables. For this purpose we start by
collecting the T steps history of the process variables as ȳ, ū and ω̄.

ȳ =



y1(0)
...

ym(0)

y1(1)
...

ym(1)
...

y1(T + 1)
...

ym(T )



∈ IR(T+1)m, ū =



u1(1)
...

un(1)

u1(2)
...

un(2)
...

u1(T − 1)
...

un(T − 1)



∈ IR(T−1)n, ω̄ =



ω1(0)
...

ωp(0)

ω1(1)
...

ωp(1)
...

ω1(T )
...

ωn(T )



∈ IR(T+1)p (2.116)

Therefore, finding a function connecting the process disturbances to the manipulated vari-

ables and outputs is equivalent to find Pȳω̄ and Pūω̄ in:[
ȳ

ū

]
=

[
Pȳω̄

Pūω̄

]
· ω̄ (2.117)
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Assuming for simplicity that y(0) = 0, we have that:

ȳ = αȳ + βū+ Ωω̄ (2.118)

where

α =



0 0 0 . . .

A0(0) 0 0 . . .

A1(1) A0(1) 0 . . .

A2(2) A1(2) A0(2) . . .
...

...
...

. . .


β =



0 0 0 . . .

B0(0) 0 0 . . .

B1(1) B0(1) 0 . . .

B2(2) B1(2) B0(2) . . .
...

...
...

. . .



Ω =


0 0 0 . . .

W1(0) W0(0) 0 . . .

W2(1) W1(1) W0(1) . . .
...

...
...

. . .

 (2.119)

Solving (2.118) for ȳ:

ȳ = (I − α)−1βū+ (I − α)−1Ωw̄ (2.120)

where we will denote φ = (I − α)−1 for simplicity in the following derivations.

The history of the control action can then be expressed as:

ū = κ · ȳ (2.121)

where

κ =


K0(1) 0 0 . . .

K1(2) K0(2) 0 . . .

K2(1) K1(1) K0(1) . . .
...

...
...

. . .

 (2.122)

Substituting (2.121) in (2.120) and solving for ȳ, we find Pȳω̄:

Pȳω̄ = (I − φβκ)−1φΩ (2.123)

Substituting (2.120) in (2.121) and solving for ȳ, we find Pūω̄:

Pūω̄ = (I − κφβ)−1 · κφΩ (2.124)

The problem of using Pȳω̄ and Pūω̄ is that they are not convex functions of the design param-

eters κ. We seek a change of variable which makes Pūω̄ convex. To this aim, we first use the

following matrix identities to rearrange Pūω̄ and Pȳω̄:

(I +AB)−1 = I −A(I +BA)−1B (2.125)

(I +AB)−1 ·A = A(I +BA)−1 (2.126)
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resulting in:

Pȳw̄ = φΩ + φβ (I + κφβ)−1κ︸ ︷︷ ︸
Q

φΩ (2.127)

Pūω̄ = (I − κφβ)−1κ︸ ︷︷ ︸
Q

φΩ (2.128)

We can then make the change of variable Q = (I + κφβ)−1κ and then Pȳw̄ and Pūw̄ become

affine functions of Q.

Pȳw̄ = φΩ + φβQφΩ (2.129)

Pūω̄ = QφΩ (2.130)

We can then propose any convex cost function Γ(ū, ȳ) as a function of Q:

Γ(ȳ, ū) = Γ(Pȳω̄ · ω̄, Pūω̄ω̄) = Γ(QφΩω̄, φΩω̄ + φβQφΩω̄) (2.131)

The selection of Γ(ȳ, ū) is arbitrary, and could be for example a quadratic cost function of the

measured and manipulated variables. The optimization problem to be resolved would be

min
Q

Γ(QφΩω̄, φΩω̄ + φβQφΩω̄)

s.t. Q lower triangular (2.132)

when the optimal Q is found we can then retrieve κ as:

κ = (I −Qφβ)−1Q = Q(I − φβQ)−1 (2.133)

The problem now is that in the cost function we wanted to add sparsity of κ, but we did a

change of variable and our design parameter in the cost function is Q.

2.3.2 Find a convex function for the structure of the controller

A traditional complexity cost function is that one which counts the number of interconnections

used in the control system, that is, the total number of times that the history of an error signal

ei(t) is used to calculate a control action uj(t). For the control law in (2.113), we would ideally

use the following function:

str({Kp}) = ||
∑
p=o

Kp||0 (2.134)

where each non-zero element in the matrix
∑

p=0Kp translates intro a connection between an

error signal and an actuator. Therefore, the 0-norm quantifies the number of these interconnec-

tions. The problem is however that the 0-norm is not a convex function, and therefore the 0-norm

problem is normally approximated by the 1-norm leading to the following structure function:

str({Kp}) = ||
∑

Kp||1 (2.135)
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After stating the performance cost function, the problem is that we performed a change

of variable, and whilst we would like to minimize on κ, only Q is accessible for optimization.

Minimizing the 1-norm on Q doesn’t imply sparsity on κ, and an alternative has to be sought.

The idea is that post-multiplication by a matrix which includes a column of zeros results in a

matrix with a column of zeros in the same position. The same happens with the rows when

we have a matrix pre-multiplication. As it can be observed in (2.133), in the calculation of κ

from Q, the matrix Q can be either pre-multiplying or post-multiplying, which indicates tat rows

and columns with zeros in Q are translated as rows and columns with zeros in κ. We can then

impose row and column sparsity on Q and it will be translated into row and column sparsity in

κ. The pseudo-norms for row and column sparsity for X ∈ Rm×n are:

Row sparsity

||X||r,0=
m∑
i=1

max
1≤j≤n

|sign(Xij)| (2.136)

Column sparsity

||X||c,0=

n∑
j=1

max
1≤i≤m

|sign(Xij)| (2.137)

These pseudo-norms calculate the number of rows/columns whih have elements different

than zero. The problem is that these pseudo-norms are not convex, so we have to use following

1-norm approximations

Row sparsity

||X||r,1=
m∑
i=1

max
1≤j≤n

|Xij | (2.138)

Column sparsity

||X||c,0=
n∑
j=1

max
1≤i≤m

|Xij | (2.139)

min
Q

Γ(QφΩω̄, φΩω̄ + φβQφΩω̄) + λ(||Q||c,1+||Q||r,1)

s.t. Q lower triangular (2.140)

2.3.3 Application of the theoretical results on Sparse Control

The theoretical results on sparse control introduced in this section have been generated in

synergy with the research project WARP funded by the Swedish program PiiA. The project

WARP deals with the control of industrial processes over wireless sensors and actuators, where

the introduced method is expected to be able to select which sensors or actuators would be

used depending on possible communication problems like jitter or packet loss.
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Chapter 3

Control problem statement

In this chapter, we are going to go through the building blocks of the basic closed-loop control

paradigm we present in Figure 3.1. An identification module produces simple control-oriented

dynamical models of the controlled plant (more details for which we provide in Chapters 4, 5

and 5). In Section 3.1 we introduce the scenario approach which we later use in Section 3.2

to formulate the scenario-based control problem. Notice that the system identification module

provides to the controller both a description of the system dynamics (modelled part) as well as

a representation of its uncertainty (unmodelled part). Further, a controller calibrator module will

fine-tune the SMPC controller giving more gravity either to the fulfillment of the control objec-

tives, the reduction of fuel consumption or other objectives, so as to lead to a good closed-loop

performance.

3.1 Representation of modelling uncertainty

In this section we introduce the scenario-based modelling and control approach. It is rather com-

mon in stochastic approaches to assume that the uncertainty assumes an algebraicly favourable

form, e.g., it is log-concave or, very often, it is assumed that is follows a normal distribution. The

requirement that modelling errors are independent and identically distributed is frequently fur-

ther imposed. It is easy to understand that such assumptions are rather restrictive, do not reflect

how the plant is operated and are likely to lead to erroneous results, bad performance and little

protection from unexpected realisation of the uncertainty.

As we can see in Figure 3.2 and later in Chapters 4 and 5, the predicted temperatures of the

walking beam furnace and the ethylene cracking furnace, do not follow the normal distribution

and are definitely not time-invariant1.

3.1.1 Scenario fans and trees

Scenario fans and scenario trees are structures with which we try to capture how certain un-

certain parameters of the system dynamics evolve in time, that is, to describe a time-dependent
1It is intuitive that our predictive ability is better in the near future and it worsens the further into the future we try

to predict. What is more, as more data are collected, this will change: the model will improve and adapt to the new
data and these distributions will also change.
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Plant

Controller

Identification

Controller
calibrator

Model

OutputsInputs

Quality/performance indices

Controller parameters

Uncertainty

Figure 3.1: Control concept comprising the controlled plant, an identification module which
estimates the system dynamics and the uncertainty acting on the system, a controller running
stochastic model predictive control or some other advanced control algorithm and a controller
calibrator which fine-tunes the controller so as to optimise the closed-loop behaviour of the
system.
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Figure 3.2: Contour plots of frequency of prediction error. The three figures from left to right
represent contours of the joint error density function, that is the probability density function of
(εk+j|k,εk+j+1|k) with j ∈ {7, 8, 9}, i.e., three last prediction steps. These are the prediction
errors of a black-box linear model for the WBF — see Section 4.2.5. As it can be seen, these
errors are not well described by a Gaussian distribution.
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Figure 3.3: Scenario tree describing the uncertainty propagation of {wk+j|k}j .

(multi-stage) dynamics inherent to which is the notion of time causality on which we will elab-

orate further later. Let {wj}j=0,...,N be a finite-horizon sequence of random vectors wj . A sce-

nario fan is a collection of equiprobable realisations of this sequence, i.e., it is a collection

{wij}j=0,...,N ;i=1,...,M . Scenario fans offer a purely data-driven approach for the representation of

the uncertainty associated with the random sequence {wk}k and a way to describe its probabil-

ity density function. Nonetheless, a good representation of this probability distribution requires

a lot of such data which in the context of optimisation and/or when it comes to using such a

non-parsimonious representation for (real-time) control purposes, they may deem the problem

computationally intractable.

A scenario tree is a compressed form of a scenario fan and an alternative representation of

the uncertain sequence {wk}k. A scenario tree can be constructed from a scenario fan using

some scenario reduction algorithm — such algorithms will be discussed in Section 3.1.2. In a

scenario tree, realisations are no more equiprobable and a tree-like structure is introduced to

capture the temporal distribution of {wk}k in a parsimonious fashion. A scenario tree is exactly

the structure shown in Figure 3.3: The nodes of a scenario tree are partitioned in stages. The

(unique) node at stage k = 0 is called root and the nodes at the last stage are the leaf nodes

of the tree. We denote the number of leaf nodes by ns . The number of nodes at stage k is

denoted by µ(k) and the total number of nodes of the tree is denoted by µ. A path connecting

the root node with a leaf node is called a scenario. Non-leaf nodes define a set of children; at a

stage j ∈ N[0,N−1] and for i ∈ N[1,µ(j)], the set of children of the i-th node i ∈ N[1,µ(j)] is denoted

by child(j, i) ⊆ N[1,µ(j+1)]. At a stage j ∈ N[1,N ], the i-th node i ∈ N[1,µ(j)] is reachable from a

single node at stage k − 1 known as its ancestor which is denoted by anc(j, i) ∈ N[1,µ(j)−1].

The probability of visiting a node i at stage j starting from the root node is denoted by pij .

For all j ∈ N[0,N ] we have that
∑µ(j)

i=1 p
i
j = 1 and for all i ∈ N[1,µ(k)] it is

∑
l∈child(j,i) p

l
j+1 = pij .

At this point it should be clarified that the structure shown in Figure 3.4 comes with certain

assumptions on which parameters are observable, so this tree-like structure is merely indicative

DISIRE D2.1 v1.2.pdf © DISIRE Consortium Page 56 of 174



H2020-SPIRE-2014 DISIRE

2 4 6 8 10 12 14 16 18 20 22 24

−0.01

−0.005

0

0.005

0.01

0.015

Time

E
rr

o
r

Figure 3.4: Scenario tree describing the uncertainty propagation of {wk+j|k}j at some time
instant k constructed using actual modelling error data

as in different applications wk+i|k may or may not be observable at time k + j with j ≥ i.

Oftentimes, at time k+ i | k, information only up to time k+ i−P | k is available (for some p ≥ 0).

Stochastic model predictive control builds on the very elegant theory of filtrations which can

concisely describe this flow of information, but this is beyond the scope of this report [69–71].

Our discussion so far has been concerned with the scenario tree representation of the un-

certain parameter wk. To the extent that wk enters the dynamical equation of our system, it

induces an uncertain evolution for our state variable xk. Let us assume that the system state

and the disturbance variable wk are measurable at time k and that the system dynamics is given

by a recursion of the form

xk+j+1|k = f(xk+j|k, uk+j|k, wk+j|k). (3.1)

We should first notice that xk|k = xk (it is measured) and, likewise, wk+j|k = wk (which is

measured again). The planned control actions uk+j|k will be described hereafter; for now, it

should be bore in mind that these are random variables and not single control actions as in

conventional deterministic MPC.

To better understand how this uncertainty is reflected onto the (predicted) state sequence,

let us take a look at Figure 3.5. Notice that the first move from the current time instant to the next

one is deterministic since there is no uncertainty (we know xk, and wk). For this transition, the

control action uk is decided using the measured information xk andwk, that is uk|k = ψk|k(xk, wk)

is a deterministic control action. From that point on, there is multitude of possible outcomes

which the controller needs to address by devising a contingency plan known as a control policy.

At stage k + j | k, the control action uk+j|k is decided as a function of the information that is

available up to that future time instant, that is uk+j|k = ψk+j|k(xk, wk, wk+1, . . . , wk+j), where

xk, wk, wk+1, . . . , wk+j (i) have already occurred, (ii) have been measured and are (will be) avail-

able to the controller, (iii) is exactly the information that is needed to determine the system’s

state at time k+ j and (iv) identify a scenario, so, for different scenarios the controller is allowed

to make different decisions.
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Figure 3.5: Scenario tree describing the uncertainty propagation of {xk+j|k}j at some time
instant k.

3.1.2 Scenario reduction

3.1.2.1 What is scenario reduction?

Estimating the joint probability distribution of complex and correlated stochastic processes with

time-varying characteristics, such as water demands and/or electricity prices, is a formidable

task. The focus of this section is on presenting a systematic procedure for approximating histor-

ical data or jointly independent multistage simulation scenarios into scenario trees, a description

of uncertainty which is suitable for multistage optimisation. Furthermore, it will be also shown

how one can control the complexity of the tree (number of nodes) at the expense of the accuracy

of the approximation. This is of great importance for real-time control applications and it actually

enable the application of Stochastic MPC for the control of large-scale water networks.

The term scenario reduction is to some extent self-explanatory: Scenario reduction is the

procedure of simplifying a given scenario tree (in our case a fan) whose complexity is prohibitive

for its use in stochastic programming. Starting from an initial probability measure with finite sup-

port, suppP , scenario reduction consists in determining a probability measure P ′ whose support

is a subset of suppP and its cardinality is prescribed so that the two probability measures are

as close as possible to each other. This distance is quantified by an appropriate metric which

we shall define in what follows.

3.1.2.2 The Wasserstein-Kantorovitch Metric

Here we lay the foundations for approximating probability measures with others of reduced com-

plexity and (possibly) more favourable properties. As in every approximation problem, it is of key

importance to introduce a metric which measures the distance between elements of the space

(in our case, measures). One appropriate notion of distance for probability measures in measur-
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able spaces is the Wasserstein-Kantorovitch metric. For two probability measures P and Q on

a measurable space (Ω,F), the Wasserstein-Kantorovitch Lp-metric between P and Q is [72]:

Wp(P,Q) , inf
µ


(∫

Ω×Ω
‖x− y‖pdµ(x, y)

)1/p

∣∣∣∣∣∣∣∣
µ is a probability measure on

(Ω× Ω,F× F)

with marginals P and Q.

 (3.2)

According to the above definition, the Wasserstein-Kantorovitch metric is the optimal value of

an infinite-dimensional optimisation problem which is carried out over a space of measures.

Nevertheless, when the sample space is finite, the above metric can be simplified considerably

and for given probability measures the computation of their Wasserstein-Kantorovitch distance

is computationally tractable and can be done at low complexity. Indeed, let g and h be two

random variables living in IRn which admit values from a finite set and their probability density

values are P (g = gi) = pi for i = 1, . . . , ng and Q(h = hi) = qi for i = 1, . . . , nh. Then, the

Wasserstein-Kantorovitch distance between P and Q is

Wp(P,Q)p = inf

{ηi,j}i,j
i ∈ N[1,ng ]

j ∈ N[1,nh]



ng∑
i=1

nh∑
j=1

ηij‖gi − hj‖: ηij ≥ 0,

nh∑
j=1

ηij = pi,

ng∑
i=1

ηij = qj

 (3.3)

As we may observe, for discrete measures, the Wasserstein-Kantorovitch metric is the opti-

mal value of a linear program, so it can be computed very efficiently by numerical optimisation

software.

The optimal scenario reduction problem reads as follows: Given a discrete probability distri-

bution P with scenarios {gi}i∈I , where I = N[1,ng ], as well as a set of scenarios to be eliminated

J ⊂ I, compute a probability distribution QJ supported by I \ J such that its Wasserstein-

Kantorovitch distance from P is minimum. The probability distribution QJ can be computed by

solving the following optimisation problem:

D?
J , min

Wp(P,Q)p

∣∣∣∣∣∣
∑
j /∈J

qj = 1, qj ≥ 0, j ∈ J

 , (3.4)
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which is again a linear program. By virtue of (3.3), (3.4) is written as follows

D?
J = min

ηi,j ,qj

∑
i∈I

∑
j /∈J

ηij‖gi − hj‖ (3.5a)

subject to:∑
i∈I

ηij = qj ,∀j /∈ J (3.5b)∑
j /∈J

ηij = pi,∀i ∈ I (3.5c)

∑
j /∈J

qj = 1, qj ≥ 0,∀j /∈ J (3.5d)

ηij ≥ 0, ∀j /∈ J,∀i ∈ I (3.5e)

At this point notice that in (3.5), the constraints (3.5b) and (3.5d) are redundant and can be

dropped. This being the case, the above LP can be solved explicitly using duality theory (strong

duality holds true for LPs). Its optimal value is given by:

D?
J =

∑
i∈J

pi min
j /∈J
‖gi − hj‖p, (3.6)

which is obtained at

qj = pj +
∑

i∈J∩{i|j=J (i)}

pi, j /∈ J, (3.7)

where J (i) is the optimal quantisation mapping defined as

J (i) , argminj /∈J‖gi − hj‖p, i ∈ J. (3.8)

Equation (3.7) is known as the redistribution rule following the elimination of a number of sce-

narios.

Therefore, the optimal “reduced” probability distribution results from adding the probabilities

of the deleted scenarios to (one of) the closest remaining scenario(s). This implies directly that

the “reduced” probability space comprises non equiprobable scenarios in contrast to the initial

one which, in our cases, consists only of scenarios with equal probability.

3.1.2.3 The Backward Elimination Agorithm

Having defined the Wasserstein-Kantorovitch metric between probability measures we shall now

describe how this can be the basis for a scenario reduction scheme: the backward elimination

algorithm. Assume that we are given the cardinality of the set J of scenarios to be eliminated.

In order to determine the simplified probability distribution we need to solve the following con-

strained optimisation problem:

min{D?
J | J ⊆ N[1,ng ], |J |= ng − nh}. (3.9)
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Cardinality-constrained optimisation problems can be reformulated as binary optimisation prob-

lems which are known to be NP-hard. It is therefore impossible to find a global solution in

polynomial time and one must resort to heuristics that offer near-optimal solutions in a compu-

tationally tractable way. We proceed as follows: If |J |= 1 (one scenario is to be deleted), then

the optimisation problem (3.9) assumes the form:

min
s∈N[1,ng ]

ps min
j 6=s
‖gi − hj‖. (3.10)

If the minimum is attained at some s?, then the corresponding scenario (the one numbered

with s?) is removed and the redistribution rule (3.7) gives the probability distribution function of

the reduced measure. The algorithm of backward elimination amounts to applying this same

procedure recursively starting from the full set of scenarios I = N[1,ng ] ≡ {1, 2, . . . , ng} and

deleting/removing scenarios one-by-one in a way that resulting measure is as close as possible

(in the Wasserstein-Kantorovitch sense) from the initial one. The algorithm terminates when the

produced probability space has the desired number of scenarios.

The algorithm is written as follows: Let P be the initial probability measure described by ng
scenarios and nh scenarios out of these are to be removed so that the final probability measure

counts ng − nh scenarios.

Algorithm 5 Backward elimination algorithm

Require: |J |≡ nh, Initial probability measure P with ns scenarios.
J0 ← ∅
for i = 1, . . . , ng − nh do
si ← argmins/∈Ji−1

D?
Ji−1∪{s}

Ji ← Ji−1 ∪ {si}
end for
Apply the redistribution rule (3.7) to Jng−nh
return “Reduced” probability distribution function

The computational complexity of the backward elimination algorithm (Algorithm 5) is:

n3
h − n2

h(
3

2
ng +

1

2
)− 3

2
nh(ng + 1) +

1

2
n3
g +O(n2

g log ng) + 2n2
g +

3

2
ng (3.11)

The minimisation step in Algorithm 5 is written as follows:

si = argmins/∈Ji−1

∑
j∈Ji−1∪{s}

pj min
`/∈Ji−1∪{s}

‖gi − h`‖p (3.12)

3.1.2.4 The Forward Selection Agorithm

The forward selection algorithm, as its name suggests, proceeds in the opposite direction: It

commences with J = N[1,S], where S is the number of scenarios to be eliminated and removes

indices from J (one by one) so that the Wasserstein-Kantorowitch distance between the two

probability measures is minimised.
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Algorithm 6 Forward selection algorithm

Require: |J |≡ nh, Initial probability measure P with ns scenarios.
J0 ← N[1,ng ]

for i = 1, . . . , nh do
si ← argmins∈Ji−1

D?
Ji−1\{s}

Ji ← Ji−1 \ {si}
end for
Apply the redistribution rule (3.7) to Jnh
return “Reduced” probability distribution function

Algorithm 6 is the forward selection algorithm whose complexity is:

2

3
n3
h − n2

h(2ns + 1) + nh(2n2
s + 2ns +

1

3
). (3.13)

The minimisation step in Algorithm 6 can be concisely written as

si = argmins∈Ji−1

∑
j∈Ji−1\{s}

pj min
`∈Ji−1\{s}

‖gi − h`‖p. (3.14)

3.1.2.5 Application to Scenarion Tree Generation

When it comes to scenario trees, the causality that is dictated by the arrow of time has to

be taken into consideration. This is the reason why the reduction proceeds stage after stage

transforming an initial fan of independent scenarios to a structured tree. A scenario fan is a set

of independent (i.e., they share no nodes) mutlistage scenarios. The initial fan of scenarios can

be generated from past demand or price data. The proposed approach is purely data-driven

and model-free and no assumptions needs to be taken in regard to the form of the distribution

function from which these scenarios have been drawn (e.g., Normal, Weibull etc).

Various scenario tree generation methods have been proposed in the literature for multi-

stage problems [72–81]. One way to perform scenario tree generation is to start from the root

node of the scenario fan and apply scenario reduction (e.g. backward elimination or forward

selection) to the scenarios up to the first stage. This way, clusters of scenarios corresponding

to the kept ones are created and the procedure is repeated for each of the cluster by increasing

the horizon by one, and so on. This algorithm is known as forward selection (not to be confused

with the forward selection algorithm as in Algorithm 6 for scenario reduction).

Let us consider a set of independent scenarios {ξs}s∈I , where I = N[1,...,ng ], where each ξs

corresponds to a sequence of ξsk for all k = 0, . . . , N , that is ξs = (ξs0, ξ
s
1, . . . , ξ

s
N ) for all s ∈ I

while all scenarios share the same root node, i.e., ξs0 = ξ0 for all s ∈ I. Let us denote by ξs[1,k] the

truncation of the sequence (ξs0, ξ
s
1, . . . , ξ

s
N ) up to its k-th element, that is ξs[1,k] = (ξs0, ξ

s
1, . . . , ξ

s
k).

At every time k ∈ N[0,N ] the forward selection algorithm for scenario tree generation creates

progressively finer clusters by applying a scenario reduction method to the truncated sequence

ξ[1,k+1] for each of the previously created clusters. This procedure is presented in Algorithm 7.
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Algorithm 7 Forward selection algorithm for scenario tree generation

Require: Scenario fan {ξs}s∈I with I = {1, 2, . . . , ng}, Splitting factor at every stage
C1

0 ← I, C0 ← {C1
0}

for k = 0, . . . , N − 1 do
for ` = 0, . . . , |Ck| do

Partition Ck ← I`k+1 ∪ J `k+1 by applying scenario reduction to {ξs[1,k+1]; s ∈ C
`
k}

for s ∈ I`k+1 do
Csk+1 ← s ∪ (J`k+1)−1(s)

end for
Ck+1 ← {Csk+1}s∈I`k+1

end for
end for
return Generated scenario tree

3.2 Scenario-based model predictive control

3.2.1 Motivation

Model predictive control (MPC), often referred to as receding horizon control, is a class of ad-

vanced control techniques where at every time instant k an open-loop control problem is solved

along a prediction horizon using a system model of the actual process where a performance

index is minimized. The first control action of this control problem is applied to the system. MPC

has gained great popularity for its ability to handle systems with multiple inputs and outputs and

with input, output and/or state constraints.

MPC computes a sequence of (predicted) control actions based on a predictive model of

the underlying system. Inevitably, however, every model comes with uncertainty, either due

to inaccurate assumption, or due to external disturbances that cannot be cast by the model.

Besides, very accurate models are often too complex to be incorporated in an optimisation

problem. Uncertainty, is usually addressed in the literature in the context of worst-case robust

MPC, where the controller tries to accommodate the worst case scenario assuming certain

bounds for the uncertainty. This pessimistic approach can both degrade the quality of the closed-

loop performance of the controlled system and shrink its domain of attraction which practically

means that stability will be guaranteed only under very stringent assumptions.

Nevertheless, worst-case scenarios are altogether rather unlikely to occur in practice. To

give an example, if the output measurements are transferred over a wireless network where it

is likely that they are not transmitted, and assuming that this happens with probability 0.001%,

a worst-case scheme would assume that measurements are never transmitted! An alternative

approach is to introduce to the control problem formulation the notion of likelihood, or probability

of such scenarios actually occurring. In stochastic model predictive control, the controller aims

at minimising the expected value of the predicted cost along a prediction horizon rather than its

worst-case maximum value.

Stochastic MPC is the state of the art in control; we will now use the concept of scenario

trees we presented in Section 3.1.1 which can be constructed from process data as detailed

in Section 3.1.2 to formulate a control problem which offers the robustness of MPC in a non-

pessimistic fashion.
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Figure 3.6: Decision making in scenario-based model predictive control.

3.2.2 Problem formulation

Scenario-based model predictive control has become popular for its ability deliver control actions

with foresight under uncertainty and has found applications in control of power dispatch [82],

control of macroeconomic systems [69], control of supply chains [83] and many another.

In stochastic model predictive control, future control actions uk+j|k are themselves random

variables and not single control actions. Instead, in SMPC the goal is to decide a sequence of

control actions which depend on the available information up to stage k + j | k, that is, uk+j|k is

a function

uk+j|k = ψk+j|k(xk, wk, wk+1, . . . , wk+j). (3.15)

The decision making along the scenarios of a tree is illustrated in Figure 3.6.

Following the discussion in Section 3.1.1, the system state at stage k+j lives in a probability

space comprising the values xij for i ∈ N[1,µ(k−1)] and at every node of the scenario tree in

Figure 3.3 the controller decides a control action uik. Then, across the nodes of the scenario

tree, the system dynamics is described by the recursion

xlk+j+1|k = f(xik+j|k, u
j
k+j|k, w

l
k+j|k), (3.16)

for j ∈ N[0,N−1], i ∈ N[1,µ(j)] and l ∈ child(j, i), or alternatively

xik+j+1|k = f(x
anc(j+1,i)
k+j|k , uik+j|k, w

i
k+j|k). (3.17)

We may now formulate the following stochastic model predictive control problem with de-

cision variables π = {uk+j|k, xk+j+1|k}j∈N[0,N−1]
. The model predictive control problem can be
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written as

V ?(p, ŵk, k) = min
π

EV (π, p, k), (3.18)

where the parameter p stands for the current state measurement and ŵk is a sequence of

the predicted values of the random variable wk, that is ŵk = (ŵk|k, ŵk+1|k, . . . , ŵk+N−1|k) with

ŵk|k = wk (since ŵk is observed).

The cost function of the problem as the following random variable which is defined as a

stage-wise sum

V (π, p, k) =
N−1∑
j=0

`(xk+j|k, uk+j|k, k + j), (3.19)

subject to the system constraints, i.e., the system dynamics as in (3.16) and (3.17) and possibly

additional state and/or input constraints. The stage cost function ` reflects the control objectives

and, possibly, soft constraints, i.e., constraints of the form xk+j|k ∈ C which are — instead of

being imposed as hard constraints — replaced by a penalty function of the form

`s(x, k) = γk dist(x,C). (3.20)

In (3.19) xk+j|k are computed according to (3.16) (or (3.17)) with xk|k = p.

The expectation EV can be written in a computationally favourable form taking into account

the scenario tree structure discussed above; it is

EV (π, p, k) =
N−1∑
j=0

µ(j)∑
i=1

pij`(xk+j|k, uk+j|k, k + j). (3.21)

Such problems can often be formulated and solved as quadratic programmes, although ad

hoc algorithms have been proposed which can solve them efficiently and are suitable for real

time implementations. For particular large scale problems — where their large scale often ac-

crues from the large number of scenarios that need to be taken into account to adequately

describe the probability distribution of {wk+j|k}j — can be efficiently solved on GPUs as in [84].

The scenario-based stochastic MPC formulation has a number of advantages over conven-

tional certainty-equivalent and robust worst-case MPC formulations. First, it does not assume

accurate knowledge of the system dynamics, so it becomes resilient to modelling errors. Sec-

ond, it does not optimise for worst-case outcomes of modelling uncertainty — which in practice

are very unlikely to occur — so it is a lot less conservative. Additionally, it offers great flexi-

bility in choosing the control actions as in (3.15). Finally, contrary to SMPC formulations such

as [85], the scenario-based approach does not require the assumption of normality of uncertain

parameters which is often not realistic and may lead to erroneous results.
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Chapter 4

Case study: Walking beam furnace

In this chapter we address the case study of WP7: the walking beam furnace. First, having

received data from MEFOS, we set up a MySQL database and we preprocessed and indexed

the data. We applied various system identification methodologies and we described their uncer-

tainty using the scenario approach. Finally, we formulated a stochastic model predictive control

problem and introduced KPIs which will allow us to evaluate the closed-loop performance of the

controlled system.

4.1 Introduction and problem statement

4.1.1 Data storage and retrieval

The data are stored in a MySQL database which is hosted at 147.102.82.32 and is accessible

by a user with username monty. Access to the DB may be provided only under a non-disclosure

aggreement with MEFOS and will be given to any of the DISIRE partners upon request.

# Connection to the MySQL database

mysql -u monty -p -h 147.102.82.32

Data are stored in tabular form in a MyISAM table called WBFData which has the following struc-

ture

+----------+---------------+

| Field | Type |

+----------+---------------+

| id | int (11) |

| property | varchar (2000) |

| time | timestamp |

| value | double |

+----------+---------------+

These are the original data provided by MEFOS and are not subject to any preprocessing.

Each measurement has a unique identifier (ID) which is of type int(11). The reported property

is identified by the column property to which there corresponds a value stored under the key

value (of type double). Integer-valued properties are also stored as double for convenience
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(e.g., the door status). A timestamp is assigned to each property-value pair which is the times-

tamp of its observation. Once a property-value pair is first recorded in the database, no other

value will be recorded for the same property unless there has been a change in the value.

This is a very simple method of data compression, but makes it necessary that the data are

preprocessed to be useful for modelling purposes.

Overall, 223 properties are recorded and stored in this table which can be listed using the

command

select distinct(property) from WBFData;

The most important properties for our analysis are the zone temperatures, the fuel supplies at

each zone, the convection air flow, the pressure inside the furnace, the status of the load and

unload hatch-doors. In subsequent sections we will list the exact variables we use for model.

For convenience we have created a table called WBFDataShort in which we store only those

properties that are relevant for modelling. Using the raw data from table WBFData we subsam-

pled (using a moving average) and we store the measurements in talbe WBFDataShort with a

sampling time of 10s. The original data were unevenly sampled and typical sampling times were

about 1s which is too small for our purposes.

In WBFDataShort we have stored the following properties

1. WBF Z0X OilControl FIC:HSI.[MV/WSP/POut]

2. WBF Z0X OilOutput:HSI.MV

3. WBF MainExhaust ExhaustTemperature:HSI.[MV/WSP/POut]

4. WBF MainExhaust ExhaustFlow FIC:HSI.[MV/WSP/POut]

5. WBF Z0X CombAir FIC:HSI.[MV/WSP/POut]

6. WBF Z0X ZoneTemp:HSI.[MV/WSP/POut]

7. SU IML GB[5/6/29/30] SGU:HSI.Value

8. WBF PC027:HSI.[MV/WSP/POut]

9. WBF ColdCAirOutputHSI:MV

Notice that certain values have one of the three suffixes: MV, WSP or POut. Variables ending in

MV denote a measure value (using a sensor). The ones ending in WSP correspong to set-points

which are provided to the controllers and POut are the signals produced by the corresponding

controllers.

4.1.2 Getting in touch with the data

The properties of interest for the walking beam furnace are the following

• Oil Flow (WBF Z01 OilControl FIC val) – supply rate of oil to the burners

• Atomized air – air used to atomize the oil (highly correlated to oil-flow)

• Combustion Air – air flow to the furnace

• Pressure – pressure inside the furnace

• Oxygen % – percentage of O2 inside the furnace

• Status of loading hatch-door

• Status of unloading hatch-door
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Variable Description Limits Role
WBF Z0[1-3] ..

OilControl FIC val

Supply rate of oil to the burners. There is
one burner at each zone

0 ∼ 50kg/h MV

WBF_Z0[1-3] ..

AtomAir_FIC:HSI.MV

Atomisation air used to dilute the oil. – MV

WBF Z0[1-3] ..

ZoneTemp:HSI.MV

Zone temperature. At each zone there are
two thermocouples; one at the wall of the
zone and one at its ceiling.

During typical operating
the zone temperatures are
roughly between 500◦C and
1200◦C

T

WBF MainExhaust ..

ExhaustFlow FIC:HSI.MV

Exhaust flow – M

SU IML GB[5/6/29/30] ..

SGU:HSI.Value

Hatch-door status Open or Closed or Ajar M/MV

WBF PC027:HSI.MV Pressure −50 ∼ 50Pa M
WBF Z0[1-3] ..

CombAir FIC:HSI.MV

Combustion air at each zone. M

WBF Z0[1-3] ..

O2 QIC:HSI.MV

Oxygen concentration (%). Measured us-
ing a ABB-ZDT sensor.

0 ∼ 25% M

WBF ColdCAir..

OutputHSI:MV

Recirculation of cold air. Recirculation was
switched off during the trials. (%).

– M

Table 4.1: Variables of the WBF. T: target, MV: Manipulated variable, M: Measured variable
(e.g., output).

  

Pressure
Oxygen concentration

Fuel rate

Atomisation air

Exhaust flow

Comb. air flow

Temperature

Door status

Figure 4.1: Inputs (fuel rate, atomisation air, exhaust flow (controlled by the exhaust damper)
and combustion air supply rate), outputs (temperatures) and disturbances (hatch-door status)
of the walking beam furnace.

A concise overview of the system variables is provided in Table 4.1. As we may observe

both in Figures 4.2 and 4.3, the system variables are highly correlated with one another and,

additionally, the fact that the data have been gathered from closed-loop simulations deems the

task of identifying a system model rather hard. Nonetheless, as we will show in Section 4.2 it is

possible to predict the system trajectories along a horizon of 100s.

4.1.3 Data preprocessing

Prior to the modelling phase, the data have been preprocessed to eliminate missing values. The

original sampling time was approximately 1s and it was non-constant. In particular, a new data

entry was registered in the database only if it was different from the previous measurement, so

the rate of update was not constant. We re-sampled the recorded time-series so that the new

sampling time is 10s; for that purpose we used a moving average filter which served also as a
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Figure 4.2: Pairwise distributions of the states and input variables of the system. The more the
ridge resembles to a straight line, the less the information that the respective pair of variables
brings about and the more linearly correlated they are.
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Figure 4.3: Time profiles of the system variables. For each variable we show the historical
values which correspond to the actual measurement (fine line) and the ones which correspond
to the set-points (thick line). As we will show later, some jitter is observed when the doors of the
furnace are open; this acts as a disturbance on the system.
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Figure 4.4: Doors’ status (open/closed) plotted along with the controlled combustion air flow.
The third, fourth and fifth plots show the set-point deviation (error) in % of the combustion air.
Notice that the opening of the hatch-doors causes the set-point deviation to run rampant.
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Figure 4.5: Doors’ status (open/closed) plotted along with the controlled zone temperature. The
third, fourth and fifth plots show the set-point deviation (error) in % of the combustion air. Notice
the large deviations when the doors are open which may be as high as ±20%.
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noise filter.

4.2 From data to dynamical process models

In this section we elaborate on how data can be used to construct dynamical process models, of-

ten exploiting prior information about the process and in other cases pursuing a totally black-box

approach where no prior knowledge about the process dynamics is assumed to be known. First,

in Section 4.2.1 we lay the foundations for our subsequent analysis stating how we evaluate the

predictive ability of a dynamical model using the modern approach of risk measures (which, to

the best of our knowledge, is applied in model selection for the first time here). Then, in Sec-

tion 4.2.3 we venture to model the process using first principles and heat balance equations.

In Section 4.2.4 we use subspace identification methods to identify linear time-invariant models

for the walking beam furnace which are simple in structure and of low complexity and lead to

a decent predictive ability. Then, in Sections 4.2.5 and 4.2.6 we develop linear auto-regressive

models and sparse models which lead to a good predictive ability. In a data-rich setting, as in

normal industrial operation, the abundance of data from the system can be used to iteratively

refine the obtained model and detect changes and time-varying behaviours; although, here, we

do not have this much of data available, we developed the computational framework for adaptive

model learning as we discuss in Section 4.2.7.

Last, we provide a comparison of the merits of all these models and analyse how the predic-

tion uncertainty propagates in time — see Section 4.3. We put together all these pieces of the

puzzle to state the stochastic model predictive control problem in Section 4.4.

4.2.1 Evaluation of predictive ability

Predictive ability. Models, regardless of their form and structure, need to be appraised for

their predictive ability. For this purpose we introduced and used a new performance indica-

tor which we present in this section. At time k, using past information (past observations of

the system state and input values) and given the current control action uk, the model pre-

dicts a value ŷk+1|k. Recursively, and given a sequence of future (predicted) control actions

uk+1, uk+2, . . . , uk+N−1, the model is used to predict ŷk+i|k for i = 2, . . . , N . Once the actual

output realisations have occurred, that is, at the end of the horizon, we may compute the errors

εk+j|k = ŷk+j|k − yk+j (4.1)

Thus, at every k we may create a vector εk := (εk+1|k, . . . , εk+N |k) ∈ IRN which is, essentially,

a random variable. We quantify the predictive ability of the model at time k using the predicted

mean square error defined as

PMSEk =
1

N

N∑
j=1

‖εk+j|k‖2. (4.2)
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We then define the predicted root mean square error at time k which we denote by PRMSEk as

the square root of PMSEk,

PRMSEk =
√

PMSEk. (4.3)

This is a random variable. It should be clear that performing a single-shoot prediction and

computing PRMSEk at a particular k is not indicative of the model’s predictive ability at other

time instants k. But computing the expected value of PRMSEk is again not really indicative

because we will be disregarding all other higher-order moments of PRMSEk.

Quantifying risk. In order to extract a meaningful characteristic value out of the random vari-

able PRMSEk we need to employ an appropriate risk measure. In particular, since we need

to minimize the prediction error – rather than to maximise it – we are looking for a convex risk

measure. The theory of risk measures has been well established the last decade and certain

well-posedness axioms have been postulated.

Rigorously speaking, a risk measure is a mapping from a space of measurable integrable

functions Lp(Ω,F ,P) over a probability space (Ω,F ,P) to the set of extended-real numbers

ĪR = IR sup{±∞} which is proper (i.e., for all random variables Z ∈ Lp(Ω,F ,P), a proper risk

measure ρ : Lp(Ω,F ,P)→ ĪR satisfies ρ(Z) > −∞ and dom ρ = {Z : ρ(Z) < +∞} 6= ∅. A risk

measure is called coherent if it satisfies the four coherency axioms which are stated as follows

1. Subadditivity: ρ(Z + Y ) ≤ ρ(Z) + ρ(Y ) for all Z, Y ∈ Lp(Ω,F ,P)

2. Positive homogeneity: ρ(αZ) ≤ αρ(Z) for all Z ∈ Lp(Ω,F ,P) and α ≥ 0

3. Monotonicity: ρ(Z) ≤ ρ(Y ) whenever Z ≤ Y for Z, Y ∈ Lp(Ω,F ,P) and the relation Z ≤ Y
is meant in the almost-sure sense, i.e., P[{ω : Z(ω) > Y (ω)}] = 0

4. Translation invariance: ρ(Z + c) = c+ ρ(Z) for al Z ∈ Lp(Ω,F ,P)

Notice that because of the subadditivity and positive homogeneity requirements, coherent risk

measures are convex.

A risk measure which complies to these axioms is termed a coherent risk measure. The

most popular risk measure which enjoys a series of favourable properties is the average value-

at-risk of an (integrable) random variable Z which is defined as

AV@Rα[Z] = inf
t∈IR
{t+ α−1E[Z − t]+}, (4.4)

where [X]+ = max{0, X} and α is the significance level at which AV@Rα is estimated.

In order to understand the meaning and practical significance of this operator, we need first

to define the value-at-risk of a real-valued random variable Z. This is

V@Rα[Z] = F−1
Z (1− α), (4.5)

that is, it a value above which there is probability at least α that Z is, and in fact it is the smallest

such value. Formally,

V@Rα[Z] = inf{z : P[Z ≤ z] ≥ α}. (4.6)
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`

Figure 4.6: Understanding AV@Rα: V@Rα splits the probability density function in two parts
where the right tail has probability α. AV@Rα is the probability of the part of the PDF which is
above V@Rα.

It can be easily shown that AV@Rα[Z] is the expectation of Z conditioned by Z ≥ V@Rα[Z], i.e.,

AV@Rα[Z] = E[Z | Z ≥ V@Rα[Z]]. (4.7)

We need to highlight that the minimisation of AV@Rα[Z] leads to different choices than the

minimisation of E[Z]. It should be neither assumed that AV@Rα[Z1] ≤ AV@Rα[Z2] implies

E[Z1] < E[Z2], nor the converse.

In case the underlying probability space is Ω = {ω1, . . . , ωK} (as in our approach) and pi :=

P[ω = ωi] then AV@Rα is computed via the following LP

AV@Rα[Z] = max
Y ∈IRK

∑
piYiZi︸ ︷︷ ︸
〈Y,Z〉

(4.8a)

s.t.
∑

piYi = 1 (4.8b)

0 ≤ Yi ≤ α−1 (4.8c)

Equivalently, AV@Rα can be computed by

AV@Rα[Z] = max
µ∈IRK

∑
i

µiZi︸ ︷︷ ︸
Eµ[Z]

(4.9a)

s.t.
∑

µi = 1 (4.9b)

0 ≤ p−1
i µi ≤ α−1 (4.9c)
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We may also compute AV@Rα[Z] using its definition as follows

AV@Rα[Z] = min
t∈IR

{
t+ α−1E[Z − t]+

}
(4.10a)

= min
t∈IR

{
t+ α−1

∑
i

pi[Zi − t]+

}
(4.10b)

= min
t∈IR,ξ∈IRn

ξ≥0,Zi−t≤ξi

{
t+ α−1

∑
i

piξi

}
(4.10c)

We now give two equivalent implementations of AV@Rα in MATLAB for finite-value risk mea-

sures. The first one relies on the dual representation of AV@Rα and returns a subgradient of

AV@Rα at Z.

function [a, mu] = avar(Z, p, alpha)

% Z : Discrete values of RV

% p : probabilities

% a : Average value at risk (level alpha)

% mu : A subgradient of AVAR_alpha at Z

[mu, a, exitflag] = linprog(-Z’,[],[], ...

ones(1, n), 1, zeros(n,1), p/alpha);

assert(exitflag == 1, ’numerical problems ’);

a = -a;

function a = avar(Z, p, alpha)

% Computation using the definition

% This code does not return a subgradient

n = length(Z);

f = [1 p/alpha ];

H = -[ones(n,1) eye(n)];

[∼, a]= linprog(f, H, -Z’,[],[],[-Inf;zeros(n ,1)]);

Quantifying the predictive ability. In our analysis, in order to select a reliable dynamical

model, we assess its predictive ability on a set of data which has not been used for training; this

we call the test dataset and thereon we compute AV@Rα[PRMSEk]. Note that the models we

produce may not be suitable for long-term open-loop predictions, they are suitable for control

applications where a predictive ability of a few time instants is required, notwithstanding, but the

availability of feedback obviates the need for very accurate models.

4.2.2 Feature selection for dimensionality reduction

One of the problems faced by machine learning and data driven approaches is the well known

“curse of dimensionality”. Most methods cannot handle a large input space, leading to reduced

generalization performance as well as very large training times. Therefore before the training of

the model, a preprocessing step takes place that aims at reducing the dimensionality of the data

set that is fed to the learning model. There are two major families of methods that can be used

for that. The first one is feature selection, which tries to pick the most informative/relevant inputs
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(also known as attributes of features for the case of classification and regressors in the case of

regression) and the second one is input transformation/projection to lower dimensional space

through manipulation of the original input vector. In the next subsection we describe some of

the most prominent methods for both approaches.

Feature selection is a search problem to find a subset of l features from a given set of d

measurements/inputs/variables/features, such that l < d “near optimal” features for the learning

task (either classification or regression) are obtained. In other words, for a set of d features, the

algorithm selects a subset of size l < d features, which contain the greatest ability to discriminate

between classes (classification) or predict the target variable’s value (regression – time series

prediction).

The goodness of a particular feature subset is evaluated by using an objective function,

J(Ym), where Ym is a feature subset of size m. Two types of approaches are the most widely

used for the calculation of this kind of objective function: filters and wrappers [86, 87]. Filters

rate the goodness of features based on general characteristics, such as interclass distance,

statistical independence or degree of correlation between input and output variables, without

employing any learning algorithm. Wrappers, on the other hand, evaluate feature subsets based

on their predictive accuracy at detecting specific events when employing a particular learning

algorithm. The two approaches are not mutually exclusive. In fact it is very common to use

a filtering/ranking approach to select a subset of the original feature set and then employ a

wrapper to select an even better subset. This hybrid approach is presented in the following

section.

Finally we should note that there is a third family of methods, which is called embedded

methods that try to select the most relevant features while building the learning algorithm. Tree

induction methods belong to that third category of methods.

4.2.2.1 Relief

Relief is a popular algorithm for feature selection originally developed for binary classification

problems, but subsequently expanded to tackle both multiclass (ReliefF) as well as regression

problems (RReliefF). The successfulness of Relief algorithm is based on its simple and effective

evaluation of the features’ quality. It is a feature weight based algorithm inspired by instance-

based learning [88]. The main difference between Relief and other ranking methods is that it is

not a “myopic” algorithm. In other words the contexts of other features is taken into account with

the Relief algorithm.

The Relief algorithm searches for the features that are statistically relevant to the target

concept using training data D, a sample size m and a τ -threshold (τ ∈ [0, 1]). The algorithm

calculates a weight for each individual feature taking however into consideration its interaction

with other features. For the binary classification case the algorithm can be summarized in

Algorithm 8.

In Algorithm 8, xH (near hit) and xM (near miss) denote the nearest point to xi in D that

belongs to the other and the same class respecively. For each feature Fi the function diff

returns the difference of feature values of the two instances.
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Algorithm 8 Relief algorithm

Require: A set of data D = {(xi, yi)} with xi ∈ IRn and yi ∈ {−1, 1}, τ (relevance cut-off value),
number of iterations (T )
z ← 0 initialize the weight vector to zero
for t = 1, . . . , T do

Pick random xk
for i = 1, . . . , N do
wi ← wi + diff(i,xk,xM )

T − diff(i,xk,xH)
T

end for
end for
select the feature set whose members exceed the given relevancy cut-off (threshold) τ , that
is S = {i;wi > τ}.
return Selected features

In Regression problems, the notions of near hit and near miss do not apply directly. There-

fore a revised formulation proposed by Sikonja and Kononeko is used to calculate again weight

vectors for each feature [89–91]. In Algorithm 9, NdY is the sum of “probabilities” that two near-

est instances belong to different classes, N i
dY ∩dF is the sum of “probabilities” that two nearest

instances have different feature values and N i
dF is the sum of “probabilities” that two nearest

instances belong to different classes and have different feature values.

Algorithm 9 Relief algorithm tailored for regression

Require: Regression dataset D with M instances and N features, a sampling parameter m, a
number n of nearest neighbours
NdY ← 0, N i

dF ← 0, N i
dY ∩dF ← 0, wi ← 0

for l = 1, . . . ,m do
Pick random xk
Find indices kj of n nearest instance-neighbours; j = 1, . . . , n
for j = 1, . . . , n do
NdY ← NdY + 1

n diff(0, xkj , xk); index 0 in diff corresponds to target (regression) variable

for i = 1, . . . , N do
N i
dF ← N i

dF + 1
n diff(i, xkj , xk)

N i
dY ∩dF ← N i

dY ∩dF + 1
n diff(0, xkj , xk) diff(i, xkj , xk)

end for
end for

end for
for i = 1, . . . , N do
wi ← N i

dY ∩dF
N i
dY

− N i
dF−N

i
dY ∩dF

m−NdY
end for
return Selected features

One way to tackle the zone temperature prediction is to treat it as a standard regression

problem using as regressors delayed values of the input variables and probably of the output

variable. In this case the input variables are

WBF_Z01_OilControl_FICHSIMV (In1)

WBF_Z01_CombAir_FICHSIMV (In2)

WBF_Z02_OilControl_FICHSIMV (In3)

WBF_Z02_CombAir_FICHSIMV (In4)
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Figure 4.7: Relief weights for the feature selection at three zones of MEFOS’s walking beam
furnace.
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WBF_Z03_OilControl_FICHSIMV (In5)

WBF_Z04_CombAir_FICHSIMV (In6)

SU_UML_GB30_SGNHSIValue (In7)

SU_IML_GB6_SGNHSIValue (In8)

WBF_MainExhaust_ExhaustTemperatureHSIMV (In9)

while the output/target variable is the temperature at each zone measured over the next time

instance

WBF_Z01_ZoneTempHSIMV (OutT1)

WBF_Z02_ZoneTempHSIMV (OutT2)

WBF_Z03_ZoneTempHSIMV (OutT3)

Using 20 time lags for each of the aforementioned variables leads to an input vector of size

200 (9 input variables by 20 + 20 past values of the output variable), which is quite a high input

space. Applying RReliefF the following weights are assigned to each one for the aforementioned

regressors for each of the three output/target variables as depicted in Figure 4.7. From the

figures it can be observed that the Exhaust variable is correlated with all three target values.

Moreover the Oil control variable is more important predictor than the Combustion air variable.

4.2.2.2 Ranking using the Area Under the ROC

Exploring each feature independently for its discriminating capability is the first step in feature

selection procedure [92,93]. Along this path, many quantities/methods have been proposed and

used for assessing the goodness of a feature: the Fisher’s ratio, the correlation coefficient, the

correlation ratio etc. Among them a method that is also insensitive to a class imbalance relies

on the use of the Area Under the Receiver Operating Characteristic (ROC) curve (AUC) [94].

Wasikowski and Chen [94] proposed the use of the trapezoidal rule with a small number of

trapezoids to estimate the AUC, trading accuracy for speed. However for the case of binary

classification problems, a more accurate estimation is given using the equation below [95]:

AUC =
1

mn

m∑
i=1

n∑
i=1

I(r−i , r
+
j ), (4.11)

where I is given by

I(r, s) =


1, if r > s

1
2 , if r = s,

0, otherwise

(4.12)

and m is the number of negative cases r−, r−i is the value of the feature of the i-th negative case

and n is the number of positive cases r+ and r+
j the value (of the feature) of the j-th positive

case.

ROC curves are dominantly used in binary classification problems but its use can be also

accommodated for multiclass settings [96], where the AUC is averaged across all class pairs.
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The use of the average measure of AUC is, however, an approach that neglects possible corre-

lations with other features and might lead to a list of features, which have little to add once put

together for a classification problem. A simple solution is to rank features based on AUC value

and also take correlation with other features into account. A possible implementation given in

Algorithm 10 [92,93,97].

Algorithm 10 Ranking algorithm using the Area Under the ROC and the correlation between
variables
Require: ...

Rank the features fi; i = 1, . . . ,K in descending order (where K is the number of features)
and select the one fi1 with the highest average AUC value,

i1 ← arg max
j
{AUCaj}j=1,...,K

with AUCaj being the average AUC value of j-th feature.
Select the second feature fi2 for which

i2 ← arg max
j
{w1AUCaj − w2|ρi1,j |}j=1,...,K;j 6=i1 ,

where ρi1,j is the cross-correlation coefficient between fi1 and fj and the weights w1 and w2

control the relative importance of AUC value and cross-correlation respectively.
for k = 3, . . . ,K do
ik ← arg maxj

{
w1AUCaj − w2

k−1

∑k−1
r=1 |ρir,j |

}
j 6=ir

end for
return Ranked features

In this algorithm the first feature is ranked based on the average AUC value, the second is

ranked taking into account its average AUC value and its correlation with the best feature, and

the rest is ranked taking into account their average AUC value and their average correlation with

the already “ranked-higher” features. Note that the parameters w1 and w2 are selected either by

considering expert knowledge or through a cross-validation procedure.

The ranking using the AUC of ROC will be used in Section 4.6 to predict the combustion

quality.

4.2.3 Grey-box models based on first principles

In this section we present results using a grey-box modelling approach. The model structure is

derived from first principles, which in our case are the heat and mass balance equations, but

with unknown parameters. The model parameters are then reconstructed from measurements.

Air, which is used to effectuate the combustion in the three zones of the furnace, is provided

by inlets at each zone. This air draft flows upstream from zone 3 to zone 2 and down to zone 1

and, finally, it is let out to the environment through an exhaust pipe. Let Fi be the mass flow of

air into zone i. Let us assume that the furnace is firmly closed. Then, the flow of air from zone

3 to zone 2 will be F3. The flow from zone 2 to zone 1 will be F2 + F3 and the outflow from zone

1 will be F1 + F2 + F3.

Heat flows, roughly speaking, are conditioned by the temperature gradient, the intensity of
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the convection and the free area through which the heat may be transferred.

The heat balance equations have the following form:

c
dmiTi

dt
= Q̇i − L̇i −

∑
j∈C−(i)

Ḣij +
∑

j∈C+(i)

Ḣji, (4.13)

where c is a constant to be identified, Ti is the temperature at zone i,mi is the mass of air at zone

i, L̇i is the rate of heat losses from zone i to the environment, Ḣij is the rate of heat exchange

from zone i to zone j. Since, however, Ti > Tj for i > j, heat flow upstream, from zone 3 to zone

1. This is further promoted by the air draft which flows in this direction, therefore, this simplifies

the above model as: Heat accumulation = heat supply – heat losses to the environment – heat

convection upstream + heat convection from downstream, or,

c
dmiTi

dt
= Q̇i − L̇i −

∑
j<i

Ḣij +
∑
j>i

Ḣji, (4.14)

We will assume that the heat supply is proportional to the fuel flow, that is

Q̇i = κḟi, (4.15)

for some positive constant κ > 0. We assume that the heat losses depend linearly on the

temperature gradient between the zone temperature Ti and the ambient temperature T∞, that

is

L̇i = λ(Ti − T∞) + L̇di , (4.16)

for some λ > 0, where, of course Ti > T∞ and L̇di , for i = 1, 3, are the heat losses because of

the doors of the furnace not being closed. The latter can be modelled as

L̇di = λdδiF (Ti − T∞), (4.17)

where δi ∈ [0, 1] is the door status at zone i with δi = 0 meaning that the door is firmly closed

and δi = 1 meaning that the door is fully open and F is the flow of the air draft which promotes

the convection of heat.

Finally, the heat convection rate between zones will be given by

Ḣij = βiF (Ti − Tj) (4.18)

for i > j. Overall, the system model becomes

c
dmiTi

dt
= κḟi − λ(Ti − T∞)− λdδiF (Ti − T∞)−

∑
j<i

βiF (Ti − Tj) +
∑
j>i

βjF (Tj − Ti). (4.19)

The derivative in the left hand side of (4.19) can be written as

dmi(t)Ti(t)

dt
= mi(t)

dTi(t)

dt
+

dmi(t)

dt
Ti(t). (4.20)

DISIRE D2.1 v1.2.pdf © DISIRE Consortium Page 81 of 174



H2020-SPIRE-2014 DISIRE

  

#1 #2 #3

Ambient

Figure 4.8: Sketch of the heat flows through the walking beam furnace. Heat flows Q̇i come
from the burning of fuel. Heat losses to the environment are denoted as L̇i and depend on the
doors’ status. Heat flow from zone i to zone j is denoted as Ḣij .

In Figure 4.8 we present a conceptual illustration of the physical model of the system. The

light-grey arrow indicate terms which are neglected: we assume that there is no downstream

heat flow and the losses from zone 2 are negligible. This assumption is meaningful because

zone 2 is insulated by zones 1 and 3, so the only heat losses are through the furnace walls.

By the mass balance in the furnace we have that

dmi(t)

dt
= F (t). (4.21)

The above analysis has not taken into account a series of complex phenomena such as

turbulence, heat transfer by radiation, but still introduces a structure for the WBF as it is de-

scribed in Figure 4.8. What is most important is the fact that even with this elementary analysis,

we can see that the physical model of the system turns out to be nonlinear. Therefore, linear

models can only be used as approximate models in the context of control and not for open-loop

simulations. The above analysis is indicative of a model structure which determines which input

and output variables affect which output ones which will be later used in Section 4.2.5 (see for

example Tables 4.3 and 4.4).

4.2.4 Subspace identification of linear models

Discrete time state-space formulation of a linear dynamical system is given as

xk+1 = Axk +Buk +Kek, (4.22a)

yk = Cxk +Duk, (4.22b)

Subspace state-space system identification methods, often abbreviated as 4SID or sub-

space identification methods, aim to identify system matrices A,B,C, and D directly from input-

output data. Hence, we do not assume any kind of structure of the model, except in our case
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Variable name
WBF Z0[1-3] ZoneTempHS:IMV

WBF Z0[1-3] OilControl FICHSI:MV

WBF Z0[1-3] CombAir FICHSI:MV

SU IML GB6 SGNHSIValue

SU UML GB30 SGNHSIValue

WBF MainExhaust ExhaustFlow FICHSI:MV

WBF Z0[1-3] ColdCAirOutputHSI:MV

WBF Z0[1-3] O2 QICHSI:MV

Table 4.2: Variables used in subspace identification

that D = 0. These methods provide an alternative to classical methods, such as ARX, but are

founded on completely different principles. They draw heavily on geometric projections and lin-

ear algebra methods, such as QR decomposition and SVD, which gives them favorable numeric

properties. More specifically, they exploit the relation of state-space realization and the convolu-

tion sum of a discrete-time dynamic system though so-called Hankel matrix. In turn, this matrix

can be factored as a product observability and controllability matrix, which depend on system

matrices A,B and C. By using linear algebra methods these system matrices can be reliably

estimated.

On the other hand they lead to linear time-invariant systems with a state-to-output relation-

ship of the form (4.22b), which calls for the design of a state observer if the model is to be used

for control purposes.

Furthermore, the only parameter to be decided is the model order. This avoids need for

complicated parametrization even when dealing with complex models [98]. However, the theory

behind them is somewhat involved and they typically need a large number of data to estimate

accurate models.A good overview of subspace identification methods for linear systems is given

in [99]. Another obstacle is a need for special care when dealing with data obtained in closed

loop which is our case. Luckily, today these methods have mature and reliable implementations

already exist, such as Matlab’s n4sid algorithm.

Informally speaking, unlike ARX or ARMAX methods which optimize for one-step ahead

predictions, subspace methods effectively optimize for j-steps-ahead prediction. This means

that multiple steps ahead prediction is accounted for directly and this is what is typically desired

for models that used in model predictive control. As we will see in next chapter, when dealing

with ARX model K-steps ahead prediction, we actually perform K one-step ahead predictions.

Doing this can introduce a bias in our predictions, because different steps ahead predictions

may not behave similarly.

Predictive performance obtained with Matlab’s N4SID algorithm implementation is depicted

in 4.9. Variables used in subspace identification are listed in Table 4.2.

4.2.5 Linear auto-regressive models

ARX model description In this section we present an overview of efforts in identifying an ARX

type system models. In short, we are interested in finding a linear mapping of past values of
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Figure 4.9: Results obtained with subspace identification method

both inputs and outputs of a process to predict it’s future behaviour. Thus, model of the furnace

has the following form:

ym(k) =

Ny∑
i=1

N i
y∑

j=1

aijy
i(k − j) +

Nu∑
i=1

N i
u∑

j=1

biju
i(k − j), (4.23)

where Ny is the number of process outputs and m ∈ {1, . . . , Ny}. N i
y is the number of values

of output yi(k) we will use. Total number of inputs is Nu, while N i
u is the number of past values

of input data for input i. Coefficients aij and bij are to be estimated to provide best possible fit

according to a specified criterion. Notice that we can rewrite (4.23) as

ym(k) = φ(k)>p. (4.24)

Column vector φ(k) is called a vector of regressors at time k and is a collection of yi(k − j) and

ui(k − j) values, while p is an unique vector of corresponding coefficients as defined above.For

convenience we will define the following

A =


φ(Hm + 1)>

φ(Hm + 2)>

...

φ(Hm +ND)>

 , (4.25)

here ND is number of data points in our training data set. The standard approach to system

identification suggests finding a vector of parameters p which solves the following optimization
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problem

minimize
1

2
‖Ap− ym‖22. (4.26)

This is well known least squares problem and it’s solution can be expressed in closed form.

We also refer to formulation as minimizing L2 penalty. Similar problem can be formulated with

L1 penalty which would read

minimize
1

2
‖Ap− ym‖1. (4.27)

Both problems are convex and can be solved easily for reasonable dimensions using standard

techniques like the ones given in [100]. Because of oscillatory predictions , we will introduce a

new optimization problem which will take into account the overall fit of the data but will account

for oscillations in the prediction vector which, in general, are not desirable by additional penalty

term. Now, the optimization problem reads

minimize
1

2
‖Ap− ym‖22+λSR‖∆(yp)‖22 (4.28)

The vector in the second term ∆yp is defined as ∆yp(k) = yp(k+1)−yp(k), ∀k ∈ {1, . . . , len(yp)−
1} and is usually called slew rate of the signal (hence λSR), where λSR > 0 is a user defined

parameter that accounts for trade-off between model fit and smoothness of predicted values.

Larger values of λSR will enforce a very smooth response at the cost of accuracy, and vice

versa.

Model training and validation The dataset given by our industrial partners is partitioned into

two separate sets; training and testing set, with 25000 and 10000 data points respecively. As the

names suggest, the model will be identified on a training set and then validated on a separate set

of data in order to test it’s predictive abilities outside the training region. This standard technique

is used to avoid over-fitting of the data on the training set. For example, an overly complicated

model will be able to achieve superior performance on training set by adapting to measurement

noise of the provided data, but will have poor performance on testing set. Striking the balance

between model complexity that captures significant characteristics of a process and is simple

enough not to capture noise, is precisely why we use two separate sets. Partition of the data

is shown in the Figure 4.10; notice that the mid part of the data in this figure is omitted. This is

both because these data correspond to low temperatures and because during that period the

furnace experienced certain technical problems according to MEFOS.

We believe that testing data captures all of the important operating conditions of the plant.

It shows a region where steady set point is required, it shows a region where there is a lot

of movement of material and door openings and it shows a region where there is a ramp like

increase of the temperature.

However, by pure visual inspection, we are able to observer a significant similarly between

two input variables, namely, oil expenditure and combustion air (draft). This is depicted for test

and current training data in Figures 4.11 and 4.12 where these two vectors are plotted against

DISIRE D2.1 v1.2.pdf © DISIRE Consortium Page 85 of 174



H2020-SPIRE-2014 DISIRE

1 2 3 4 5 6 7 8 9 10 11

Data sample
×10 4

0

200

400

600

800

1000

1200

1400

T
e

m
p

e
ra

tu
re

 [
°
C

]

Test data

Training

Testing

Figure 4.10: Partitioning of the data provided by industrial partner. Red patch in the image is
the data used to train a model, whereas green patch indicates a testing set. Note that we have
selected regions whose operating temperature is above 500 degrees Celsius which indicates
normal operating regime.

each other for all three zones.

All of the predictive performance regarded thus far has been concerned with one step ahead

prediction, i.e., the model is required to predict only one time step into the future (one sampling

time). However, model predictive control requires N steps ahead prediction because one step

ahead prediction is usually not informative enough. Ideally, we would like to have N very large,

but more often than not this is not feasible. Hence, we introduce the following performance

measure to evaluate K steps ahead predictive ability of a model

PMSEk =
1

N

N∑
j=1

ε2k+j|k. (4.29)

In order to have only one measure for the entire model and not one indicator for each one of

the predicted temperatures (states, in general) we will define εk+j|k as a norm of the vector of

prediction errors

εk+j|k = ‖ŷk+j|k − yk+j‖, (4.30)

where ŷk+j|k and yk+j are vectors of predictions and measurements of size Ny = 3 in our case

(walking beam furnace has three different zones).

Results Here we present predictive K-steps-ahead performance of an identified model. From

a computational stand point this is a series of K successive one-step predictions, where an one-

step-ahead prediction at time k + 1 from the previous time step k is used instead of measured

value at time k+ 1. This is true only for output variables. Input values are assumed to be known
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Figure 4.11: Correlation between burned oil and draft of combustion air inside the furnace on
the set used for testing
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Figure 4.12: Correlation between burned oil and draft of combustion air inside the furnace on a
training set
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along the prediction horizon which is a realistic assumption and suitable for control applications

where input variables are decided by the controller. This way, we obtain a realistic assessment

of performance in a real world scenario.

We provide the list of input variables used in this model in Table 4.7 and the model structure

is presented in Tables 4.3 and 4.3 where we show the time lags considered for each variable.

For example, T1(k+1) is predicted using q past values of T1
1, k past values of T2 and, according

to Table 4.4, k past values of the oil flow and combustion air at zone 1 as well as k past value

of the load hatch-door status. We have associated the load door status with T1 alone and the

unload door status with the temperature at the third zone. We assume that the temperature at

zone 2 is indirectly affected by the doors’ statuses via T1 and T2 respectively.

T1 T2 T3

T1 q k
T2 k q k
T3 k q

Table 4.3: Output-output correspondence of variables and the lags used for each variables. We
use the parametrisation q = b1.67kc.

u1 u2 u3 u4 u5 u6 u7 u8

T1 k k k
T2 k k
T3 k k k

Table 4.4: Output-input correspondence of variables and the lags used for each variables. Input
varialbes. u1, u3, u5: Oil consumption rate at zones 1, 2 and 3 respectively. u2, u4, u6: Combus-
tion air flow at zones 1, 2 and 3 respectively. u7: load hatch-door, and u8: unload hatch-door.

Figures 4.13 and 4.14 show predictions for different values of K and the AV@Rα values

of the PRMSE of various models are given in Tables 4.5 and 4.6. In Figure 4.15 we see an

example predicted trajectory of an ARX model along with the actual trajectory.

It can be seen that prediction becomes worse as we increase parameter K, which is not

surprising and is to be expected. However, there is a noticeable degradation of predictive per-

formance in the region where there is a lot of material movement and door opening. It is ob-

served that the predictive performance index does not change significantly when we disregard

information on furnace door openings. This could be due to system operating in closed loop

and by doing so successfully compensates for the disturbance introduced by door openings.

4.2.6 Sparse models — LASSO and Elastic net

In this section we will describe efforts taken to identify sparse models of the underlying physical

process. Our working assumption is that only some past values of system variables are impor-

tant to obtain a good predictor model. We aim at finding simple models that still explain the data

with sufficient accuracy. By doing so we hope to obtain a model that will have superior general-

ization properties, based on the reasoning that simple model is not able to capture noise. This
1that is, T1(k − j) for j = 0, . . . , k − 1.
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Figure 4.13: Prediction performance on all zones for 5 steps ahead prediction.
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Figure 4.14: Prediction performance on all zones for 10 steps ahead prediction
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Figure 4.15: An illustration of predictive ability of trained model. Predicted trajectory is compared
to measured temperature in Zone 3 at some time instant.
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Figure 4.16: Depiction of distribution of PRMSE error measure. Red vertical line indicates
AV@Rα for α = 0.05. Roughly speaking this is a quantification of the importance/impact of the
5%-right tail.
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q k Penalty Smooth AV@R0.05 AV@R0.1

8 5 L2 No 4.2336 3.2574
8 5 L1 No 4.4440 3.4156
20 12 L2 No 4.2331 3.2562
20 12 L2 Yes 17.0589 12.4930
20 12 L1 No 4.4466 3.4169
33 20 L2 No 4.2794 3.2936
33 20 L1 No 4.4617 3.4260
50 30 L2 No 4.3007 3.3132
50 30 L1 No 4.4299 3.4044

Table 4.5: Summary of system identification results for K = 5 steps-ahead prediction. Column
named Smooth stands for standard least squares problem with additional smoothing parameter
as defined in (4.28).

q k Penalty Smooth AV@R0.05 AV@R0.1

8 5 L2 No 8.7980 6.8428
8 5 L1 No 9.1353 7.0752
20 12 L2 No 8.8208 6.8744
20 12 L2 Yes 20.9694 15.4784
20 12 L1 No 9.1512 7.0864
33 20 L2 No 8.8798 6.9127
33 20 L1 No 9.1265 7.0690
50 30 L2 No 8.9429 6.9885
50 30 L1 No 9.0637 7.0211

Table 4.6: Summary of system identification results for K = 10 steps-ahead prediction. Column
named Smooth stands for standard least squares problem with additional smoothing parameter
as defined in 4.28.

is nor unreasonable assumption but the problem is how to select those inputs. A well known

technique is to solve `1 regularized least squares problem, where penalization is imposed on

models parameters. This technique is otherwise known as Least Absolute Shrinkage and Se-

lection Operator (LASSO) [12,101] and enables us to select model structure based on the data

only. Furthermore, results of LASSO can help us interpret better interpret the model. LASSO

is used in various fields, perhaps most notably in analysis of biological data which comprises

of great number of factors, of which only some contribute to predictive ability [101]. LASSO

problem batch formulation is shown below

minimize 1
2‖Ap− y‖

2
2+λ‖p‖1. (4.31)

Parameter λ enforces sparsity in the model, meaning that higher λ will tend to force more

values of p towards zeros and is usually chosen by cross-validation. For WBF process, we solve

three different LASSO problems to obtain three different models which we will use for prediction.

Hence, we will replace appropriate terms in formulation 4.32 with Ai, pi, yi, where i ∈ {1, 2, 3}
Afterwards, we solve standard least squares problem for reduced order system which is usually

called debiasing.

Similar to LASSO, elastic net is another technique used in model selection. The associated
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Variable name
WBF Z0[1-3] ZoneTempHS:IMV

WBF Z0[1-3] OilControl FICHSI:MV

WBF Z0[1-3] CombAir FICHSI:MV

SU IML GB6 SGNHSIValue

SU UML GB30 SGNHSIValue

Table 4.7: Variables used in ARX identification

optimization problem is

minimize 1
2‖Ap− y‖

2
2+λ‖p‖1+

λ2

2
‖p‖22. (4.32)

Results are reported in table 4.8. It can be seen that Elastic net method produces models

that give lower AV@Rα score, at least on the test data.

Method λ AV@Rα

LASSO 30 8.9751
LASSO 60 9.3528
LASSO 90 8.9414
LASSO 120 8.2951
LASSO 150 9.1920
Elastic net 30 8.0293
Elastic net 60 7.9545
Elastic net 90 8.3693
Elastic net 120 8.2951
Elastic net 150 8.4822

Table 4.8: Summary of model selection algorithms. Performance is measured by AV@Rα, with
α = 0.1. In all of the models history of k = 80 was used with different λ parameter.

4.2.7 Adaptive sparse models

Having a lower complexity model for which we believe that it can properly capture behaviour of

the system well enough, doesn’t mean that it will perform well in all regimes. This could be due

to some unforeseen changes in the process or due to an operation in a new set point that was

not captured by the training data. One way of dealing with this issues is model reconfiguration

or adaptive modelling. Usually, in system identification, the whole set of data is collected and

batch regression is performed. This approach is usually not adopted for adaptive modelling ,

because of the computational burden. What is preferred is the recursive approach, in which after

each sampling instant, we update our model with the latest measurement. If we also include a

forgetting factor in our model, we can put more importance on recent measurement rendering

our model up-to-date with latest operating conditions.

To motivate this idea, below we compare results using batch least squares estimation against

model selection with LASSO and least squares re-estimation after each measurement. Forget-

ting factor was used not used in this particular instance. Results are presented in Figures 4.18
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Figure 4.17: Sparsity pattern of all three zones as chosen by elastic net algorithm with λ = 60.
Zeros in the figure signal variables that are discarded from the model. Model is reduced to about
40% variables out of possible 450.

and 4.19.

Optimization problem has the following form

minimize
1

2
‖Ap− ym‖2W+λ‖p‖1 (4.33)

Here, W is a matrix of weight parameters

1

λ

λ2

. . .

λN−1


(4.34)

where N is a number of measurements. The sum in (4.33) expands to

minimize
1

2
(x>1 p− y1

m) + λ(x>2 p− y2
m) + · · ·+ λN−1(x>Np− yNm). (4.35)

If the forgetting factor is chosen like λ ∈ (0, 1), then older measurements are given lower

weight. This accounts for our assumption that process may change and newer measurements

should bear more relevant data. In our case we chose λ ≈ 0.99.

An interesting concept which can be employed to accelerate the online training of models is

that of online censoring [102] which was very recently (2016) used for regression over a stream

of data. The concept is based on the adaptive training approach we described above and the

same principles we used in Section 2.1.2, but certain data points can be omitted if the existing

model can predict them with adequate accuracy.

Effectively, when the system dynamics is described by yk+1 = a>xk + b>vk + ek, where

yk+1 ∈ IR, xk = (yk, . . . , yk−Hy) and vk = (uk, . . . , uk−Hu) and ek ∼ N (0, σ2), then when a new
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Figure 4.18: One step ahead prediction error for standard least squares estimation vs LASSO
with recursive least squares. Forgetting factor was not used in this experiment.
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Figure 4.19: Mean squared error of one step ahead prediction for standard least squares esti-
mation vs LASSO with recursive least squares. Forgetting factor was not used.

DISIRE D2.1 v1.2.pdf © DISIRE Consortium Page 94 of 174



H2020-SPIRE-2014 DISIRE

instance (xk, vk, yk+1) arrives, it is used to update the model only if∣∣∣∣a>xk + b>vk − yk
σ

∣∣∣∣ > τk, (4.36)

where τk are threshold parameters which are determined as explained in [102]. This can further

accelerate the process of model building, especially when this is performed online.

4.2.8 Nonlinear dynamical models

4.2.8.1 Support vector machines for regression

Supposed a set of n observations is provided. In the general case, each observation, i =

1, . . . , n lies in m-dimensional space xi ∈ IRm. Along with each xi there is an observed target

variable yi which we need to predict. The regression problem consists in determining a function

f which predicts y given x.

A good answer to this problem is given in the support vector context. Support Vector Ma-

chines (SVM) is a notion introduced in the exceptional work of Vapnik [103]. As an extension to

this theory, SVR cover the corresponding regression task. The problem, in its simplest formula-

tion is stated as follows. Given a parametrization

f(x) = w>x+ b (4.37)

find w which minimizes the functional

1

2
w>w + C

1

n

N∑
i=1

max(|yi − f(xi)|−ε, 0). (4.38)

The second term of the functional is an ε-sensitive cost function and that is where the ε-SVR

name comes from. To add generality and flexibility to the method, slack variables ξi and ξ∗i are

incorporated. The optimization problem is modified as follows

min
1

2
w′w + C

N∑
i=1

ξi + ξ∗i , (4.39)

subject to the constraints

yi − w′xi − b ≤ ε+ ξi (4.40)

w′xi + b− yi ≤ ε+ ξ∗i (4.41)

ξi, ξ
∗
i ≥ 0 (4.42)

which is a quadratic optimization problem with linear constraints. The term
∑N

i=1 ξi + ξ∗i corre-

sponds to an upper bound to the number of points not belonging to function f where N is the

number of points that reside outside the ε margin. Constant C regulates the tradeoff between a

smoother or a more accurate interpolation function and it is a parameter provided by the user.
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A large C reduces the training error but increases the model complexity, i.e., the number of

support vectors, and, therefore, the training time and possibly generalization ability. A smaller

C results in a less complex model with higher mean square error but possibly resulting in better

generalization. The final, dual optimization problem can be formulated as follows

4.2.8.2 Assessment of nonlinear dynamical models

For the prediction of the temperature in the three zones, first RReliefF was used to rank the 200

regressors. Then the nested subset selection approach was used along with a linear regression

method to estimate the necessary number of regressors. That original analysis revealed that

more than of the 120 top ranked regressors are needed to achieve a substantial drop in AV@Rα.

Based on that observation, an SVR was tested achieving AV@R0.05 = 12.5765 AV@R0.1 =

10.0856.

4.3 Uncertainty propagation

We reviously presented various predictive dynamical models and proposed a method to evalu-

ate their predictive ability. When, however, it comes to using these models to make predictions it

is expedient to know, not only how good we expect the prediction to be, but what are some prob-

able realisation of the future evolution of the system trajectory. Such a collection of future state

trajectories, {xik+j|k}i,j is known as a scenario fan as discussed in Chapter 3. Scenario fans and

scenario trees, in a way, describe how uncertainty propagates throughout the prediction horizon

and it typically gives rise to representations as in Figure 4.20. The three plots in the first row

of Figure 4.20 are the original scenario fans which have been constructed using actual process

data (these are sequences of temperature prediction errors in ◦C) and count 104 (equiprobable)

trajectories. Using the scenario reduction methodology we described in Section 3.1.2 we then

derived the plots of the second row.

The scenario tree structure is better illustrated in the conceptual Figure 4.21 where we see

how 10, 000 scenarios are compressed into a scenario tree of no more than 100 scenarios.

Notice that scenario reduction not only reduces the complexity of the original scenario fan, but it

also removes scenarios which are very unlikely to happen; indeed, notice the scale of the y-axis

in the plots of the first compared to the second row in Figure 4.21.

4.4 Model predictive control

For the model predictive control problem formulation we identify two main objectives: (i) to retain

the temperatures at each zone as close as possible to the desired temperature set-points with

higher importance on the tracking error at zones 2 and 3, (ii) to penalise the consumption of fuel

at each zone. For this purpose, we use the stage cost function

`(x, u;xsp) = 1
2‖x− x

sp‖2Q+1
2‖u‖

2
R, (4.43)
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Figure 4.20: Error plots for all three furnace zones. Upper row shows all of the error trajectories
calculated at every time instant in the test data. Lower row shows reduced error trajectories by
using scenario tree with at most 100 scenarios.
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Figure 4.21: Scenario tree structure describing error propagation in the model
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Figure 4.22: Scenario tree structure for the predicted state sequence and causal control actions
along the scenario tree.

where Q = diag(Q1, Q2, Q3) is a diagonal matrix where Qi > 0 is the tracking error weight for

zone i with Q1 < Q2 < Q3, xsp is the temperature set-point which is specified by the operator

and R is a digonal matrix with zeros on the diagonal at the positions which don’t correspond to

the fuel consumption. The notation ‖·‖2Q is meant as ‖x‖2Q= x>Qx. Matrices are Q and R and

we will discuss later about how they can be chosen and updated online using PAT data (see

Figure 3.1).

Additionally, the SMPC controller needs to take into account the input constraints. Let u =

(u1, u2, u3) where u1 ∈ IR3 are the fuel supply rates, u2 is the exhaust flow and u3 ∈ IR3 are the

combustion air flows. Then

0 ≤ u1 ≤ 50, (4.44)

0 ≤ u2 ≤ 2400, (4.45)

0 ≤ u3 ≤


1000

900

1000

 . (4.46)

In this case study, causality is to be interpreted as in Figure 4.22. Indeed, at some time

instant k we observe the current temperature Tk = Tk|k, but we don’t have accurate knowledge

of the upcoming temperature Tk+1|k. Temperature Tk+1|k is estimated as a function of past ob-

served outputs and inputs of the system, but its actual future realisation is unknown. We assume

that it is an instance of a finite-dimensional probability space with sample space {T ik+1|k}i. At k

the decision variable uk|k cannot be evaluated as a function of Tk+1 since this is unknown and

has not occured yet, so uk|k = ψk|k(Tk|k,other observed info). Instead, uk+1|k is a function of

Tk+1. Recursively, this flow of information (formally known as a filtration) is reflected on the tree
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Figure 4.23: Closed-loop simulations of the walking beam furnace with a stochastic model pre-
dictive controller.

structure of Figure 4.22.

We present closed-loop simulations of the WBF with the aforementioned stochastic MPC

controller in Figure 4.23 where we see that the three controlled temperatures track the pre-

scribed set-points with adequate accuracy. We selected these set-points so as to operate the

furnace in a similar manner and around the same operating points as in the experimental setting.

Then, the stochastic MPC problem will be formulated as detailed in Chapter 3 using the

above stage cost and input constraints. The tuning parameters Q and R will affect the closed-

loop behaviour of the system as well as the unmodelled dynamics of the oxygen and pressure

inside the furnace. The available data have not allowed us to derive reliable dynamical models

for these variables. Regarding the oxygen, one possible reason is the inhomogeneity of the

distribution of oxygen in the furnace combined with the low accuracy of the oxygen sensor.

However, since these variables are not at the main focus of the control problem formulation,

i.e., we do not need to steer them to specified set-point, the availability of such models is not

first-priority. Instead, we will try to discover how the values of the tuning parameters Q and R

affect the availability of oxygen and the pressure in the WBF.

What is easier to obtain, is a machine learning model of predicted oxygen availability which

may be a nominal value. This is a nominal variable which is defined as

〈[O2]〉k,H =


0, if the H-step-ahead predicted average [O2] is in [0, 2]%,

1, if it is in (2, 5]%,

2, otherwise

(4.47)

Then, the goal is to obtain a reliable classification model of the form

〈[O2]〉k,H = Φ(yk, yk−1, . . . , yk−Hy , uk, . . . , uk−Hu , [O2]k, . . . , [O2]k−Ho). (4.48)
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This relation can be interpreted as a very coarse dynamical model, which is, however, suitable

for our purposes here.

When the penalty parameter R on fuel consumption is low, then the controller may behave

more aggressively at the corresponding zone sacrificing more fuel to obtain a lower tracking

error. This is then likely to drain the chamber of the furnace off oxygen. When R is instead

too high, then less fuel will be consumed, but then it is likely to not reach the desired tracking

accuracy.

Ultimately, what we need to achieve is a mapping of the form

(Q,R) 7→ performance indicator, (4.49)

i.e., a mapping from the tuning parameters of SMPC to the expected closed-loop performance

of the controlled system. In Section 4.5 we introduce appropriate performance indicators which

will effectuate the construction of such a mapping and allow for the online recalibration of the

controller. A more detailed analysis will be provided in deliverable reports D2.2 and D2.3.

4.5 Key performance indicators

Key performance indicators (KPIs) need to be introduced so as to be able to assess the closed-

loop performance of the walking beam furnace. Such a performance assessment can be done

either in silico, or in practice where the system should be continuously monitored and assessed,

so that corrective actions can be taken to avoid the perpetuation of an operation with poor

performance — potentially detrimental either to the plant or to the environment.

We will distinguish between level A and level B KPIs. Level A KPIs will be defined at a higher

frequency resolution and will be used by the process operator to monitor the instantaneous

performance of the process. For example, we shall define the running fuel consumption which

will quantify the instantaneous fuel consumption of the furnace using an average of a few past

measurements (spanning a few minutes back in time). These, level A, KPIs will be used by the

operators to predict poor performance which might be resulting from a technical error or human

mistake. Moreover, level A KPIs will be used to recalibrate the controller so that, overall, the

controlled system performs as expected.

On the other hand, level B KPIs will be used to assess the overall performance of the furnace

throughout the course of the whole campaign. Taking into account the dynamics of the WBF,

for all level-A KPIs we shall use a window of 5min, whereas for all level-B KPIs, we will use a

length of 1 day (or part of the day for shorter campaigns). During ordinary industrial operation,

level-B KPIs will use a window of 1 day.

KPIs are used to evaluate the performance of the operation of the walking beam furnace and,

being scalars, they allow comparisons between different configurations. They are, however, not

the only tools with which one can evaluate the performance of the process. Visualisations of the

distribution of various variables such as fuel consumption, tracking error, excess of oxygen and

concentrations of pollutants can also be employed.
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The average fuel consumption of the furnace over a horizon H is given by

KPIf =
1

H

H−1∑
j=0

fj , (4.50)

where fj is the consumption of fuel at time j.

The root mean squared tracking capability of the controlled furnace will be defined as

KPIt =

√√√√ 1

H

H−1∑
j=0

‖Tj − T spj ‖2, (4.51)

where Tj is the 3-vector of zone temperatures at time j and T spj is the corresponding set-point

at time j.

The quality of combustion is quantified by the availability of excess of Oxygen. For this

purpose we introduce the following KPI:

KPIc = AV@Rα {κ1‖[−[O2]j ]+‖∞+κ2‖[[O2]j − [O2]max]+‖∞}j∈N[0,H−1]
, (4.52)

where the operator [·]+ is defined as [x]+ = x whenever x ≥ 0 and [x]+ = 0 otherwise, [O2]j

is the 3-vector of the concentration of Oxygen at the 3 zones of the furnace at time j, [O2]max

is the 3-vector of the maximum allowed concentration of Oxygen at each zone and κ1, κ2 are

constant weights. With this particular KPI, we are interested in quantifying the extent of violation

of certain bounds — in particular [0, [O2]max]. For this reason, taking the average violation will

not be indicative; sparse but significant and extreme violations (which are of course undesirable)

would likely lead to a small value of KPIc. On the other hand, taking the maximum is again not

very indicative since a single and almost instantaneous violations (which could be the result

of a faulty measurement or local inconsistency of the concentration of Oxygen) would lead

to an unreasonably high value of KPIc. To bridge the gap between these two extremes, the

expectation and the supremum, we use the average value at risk with confidence level α as we

have already done in Section 4.2.1.

Last, we need to introduce a KPI to reflect the extent of air pollution produced by the fur-

nace. Typical pollutants are the CO2, CO, NOx, SOx and PM (particulate matter) and especially

PM10 and PM2.5 (fine particles). These pollutants are measured in the exhaust of the furnace.

According to MEFOS, the pollutants which are currently measured in production are the CO,

CO2, H2xC, NOx and SO2. The ultimate objective should be that the air around the furnace and

especially at places where people can be should comply with the EU air quality standards2 and

special emphasis should be put towards complying with the EU Industrial Emissions Directive3

At an industry-wide level, A KPI which is typically used and can also be employed here is the

air quality health index (AQHI) which quantifies the impact of the current and predicted quality

of air (taking into account a series of factors and pollutants) to public health.
2See http://ec.europa.eu/environment/air/quality/standards.htm.
3See http://ec.europa.eu/environment/industry/stationary/ied/legislation.htm and http://eur-lex.europa.eu/legal-

content/EN/TXT/?uri=CELEX:32010L0075.
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4.6 Modelling the combustion quality

4.6.1 Problem configuration

The combustion quality is related to the discussion in the previous section; using machine learn-

ing techniques we derived models which allow us to predict the expected average oxygen avail-

ability and estimate a running (level-A) value of KPIc.

As it was described in Section 4.5, the Oxygen state prediction can be cast as a classification

problem, involving three classes

C1 if the H-step-ahead predicted average [O2] is in [0; 1.5]%

C2 if the H-step-ahead predicted average [O2] is in (1.5; 5.0]%

C3 Otherwise

The prediction is again based on the following inputs and their time lagged versions up to a

lag equal to 20 and also delayed outputs (up to 20) of the value of oxygen in the targeted zone

WBF_Z01_OilControl_FICHSIMV (In1)

WBF_Z01_CombAir_FICHSIMV (In2)

WBF_Z02_OilControl_FICHSIMV (In3)

WBF_Z02_CombAir_FICHSIMV (In4)

WBF_Z03_OilControl_FICHSIMV (In5)

WBF_Z04_CombAir_FICHSIMV (In6)

WBF_MainExhaust_ExhaustTemperatureHSIMV (In7)

SU_UML_GB30_SGNHSIValue (In8)

SU_IML_GB6_SGNHSIValue (In9)

Figure 4.24 depicts the transformation from raw data to classification labels for zone 1. From

these figures it is obvious that C1 is heavily under-represented. Therefore, a SMOTE stage was

deemed necessary to compensate for that imbalance. Moreover the imbalance makes overall

accuracy not a suitable measure for assessing performance. In classification problems the most

illustrative way to assess the performance of a model is through a confusion matrix

Confusion Matrix Predicted
C1 C2 C3

True
C1 M11 M12 M13

C2 M21 M22 M23

C3 M31 M32 M33

Table 4.9: Confusion matrix definition.

The (individual) recall for class i is given by the following equation:

recalli =
Mii∑C
j=1Mij

(4.53)

For imbalanced data sets and in the absence of a cost-matrix, the average recall, the cubic
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(geometric) mean are better options compared to overall accuracy:

recallav =
1

C

C=3∑
i=1

recalli, (4.54a)

c−mean = 3

√√√√C=3∏
i=1

recalli, (4.54b)

accuracy =

∑C
i=1Mii∑C

i=1

∑C
j=1Mi,j

. (4.54c)

From an initial assessment of the predictive capabilities of the different input variables it can

be seen that the past history of the O2 measurement is a very good predictor for the average

10-step ahead state of the O2 for each zone (Figure 4.25). What is is also interesting, is that the

variables that hold the information regarding the opening and closing of the doors are ranked

very low. Moreover as it can be seen from Figure 4.26 which depicts the normalized eigenvalues

coming from the PCA of the training data for the three zones, it is obvious that the input variables

are highly correlated.

0.5 1 1.5 2 2.5

x 10
4

5

10

15

20

ra
w

 d
a
ta

Zone 1 O
2

0.5 1 1.5 2

x 10
4

5

10

15

20

1
0
 s

te
p
 a

h
e
a
d
 a

v
e
ra

g
e

0.5 1 1.5 2

x 10
4

1

1.5

2

2.5

3

c
la

s
s
 l
a
b
e
l

samples

Figure 4.24: Oxygen level, 10-step-ahead average and Oxygen level as a nominal variable
(low/medium/high) – data from the experimental campaign of MEFOS.
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4.6.2 Dealing with imbalanced data

Synthetic Minority Oversampling TEchnique (SMOTE) procedure is a method to tackle imbal-

ance [104]. This procedure creates synthetic instances for the minority class. The algorithm for

creating a new instance of the minority class introduces a synthetic example along any/all of the

lines joining that particular instance with its k nearest neighbors that belong to the minority class.

Therefore during the training process SMOTE is employed to increase the training instances of

C1.

For the oxygen state prediction we tested four different approaches. The first two are based

on feature ranking, the third one based on PCA (principal components analysis) [105] for dimen-

sionality reduction, and the last one uses the ordinal classification approach proposed by Frank

and Hall [106].

4.6.3 AUC-based approach

As it was presented in the previous section, in order to reduce the number of input variables,

we ranked the variables based on their average AUC and then used a kNN classifier to find

the optimal number of features which we subsequently fed on an SVM. Figure 4.27 shows the

performance of different features sets using as a performance measure the geometric mean, the

average recall and the overall performance for the case of zone 2. As it can be seen for this case

the “optimal” number of features is 6. The Following tables show the results of the classification

process for the three zones using the “optimal” number of features and a nearest neighbor

classifier. As it can be seen some overlap/confusion exists between consecutive classes but no

overlap between classes 1 and 3.

Confusion Matrix Predicted
C1 C2 C3

True
C1 350 16 0
C2 13 1908 199
C3 0 138 7347

Table 4.10: Results for Zone 1 using simple AUC for ranking.

Confusion Matrix Predicted
C1 C2 C3

True
C1 564 8 0
C2 10 2100 77
C3 0 64 148

Table 4.11: Results for Zone 2 using simple AUC for ranking.
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Confusion Matrix Predicted
C1 C2 C3

True
C1 42 4 0
C2 49 5410 699
C3 0 388 3379

Table 4.12: Results for Zone 3 using simple AUC for ranking.
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Figure 4.27: (AUC of ROC) Performance for different number of input variables using different
performance measures (from top to bottom: geometric mean, average recall, overall accuracy)

4.6.4 AUC and correlation metric

The combination of AUC with the correlation measure (w1 = 0.7) for ranking has as a result the

rearrangement of the top ranked features as it can be observed in Table 4.13 for zone 1.

Ranking 1 2 3 4 5 6 7 8 9 10
AUC 200 199 198 197 196 195 194 193 192 191

AUC+corr. 200 40 41 199 198 197 42 196 195 39

Table 4.13: Feature ranking using AUC and AUC+correlation (results for zone 1).

Figure 11 depicts the performance of the classification scheme for w1 = 0.8, which yielded

the best results. The following tables also show that this scheme actually harms the classifi-

cation performance indicating that good, correlated, predictors can under some circumstances

improve the performance of the classifier.
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Figure 4.28: (AUC and correlation) Performance of the classification scheme using
AUC+correlation for ranking.

Confusion Matrix Predicted
C1 C2 C3

True
C1 75 291 0
C2 0 1908 212
C3 0 179 7306

Table 4.14: Results for Zone 1 using simple AUC+correlation for ranking.

Confusion Matrix Predicted
C1 C2 C3

True
C1 504 68 0
C2 19 2009 159
C3 1 133 7078

Table 4.15: Results for Zone 2 using simple AUC+correlation for ranking.

Confusion Matrix Predicted
C1 C2 C3

True
C1 46 0 0
C2 296 5644 218
C3 1 1108 2659

Table 4.16: Results for Zone 3 using simple AUC+correlation for ranking.
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4.6.5 PCA Dimensionality Reduction

The behavior of the prediction algorithm using PCA instead of feature selection are quite differ-

ent. As it can be observed from Figure 4.29 and the following confusion matrices the results are

much worse compared to the previous approaches especially for class C1 of zone 1.
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Figure 4.29: (PCA for dimensionality reduction) Performance for different number of input vari-
ables using different performance measures (from top to bottom: geometric mean, average
recall, overall accuracy)

Confusion Matrix Predicted
C1 C2 C3

True
C1 4 362 0
C2 1 1537 218
C3 0 371 7114

Table 4.17: Results for Zone 1 using simple PCA.

Confusion Matrix Predicted
C1 C2 C3

True
C1 510 57 5
C2 6 1281 900
C3 0 127 7085

Table 4.18: Results for Zone 2 using simple PCA.
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Confusion Matrix Predicted
C1 C2 C3

True
C1 46 0 0
C2 388 4415 1355
C3 36 2865 866

Table 4.19: Results for Zone 3 using simple PCA.

4.6.6 Ordinal Classification

Regression is one of the most fundamental problems concerning machine learning. Many tech-

niques such as Support Vector Machines (SVMs) [103] have been proposed in order to deal with

this kind of problems. However, less attention has been paid to ordinal regression also called

ordinal classification or ranking learning problem [107], where the labels of the target variable

exhibit a natural ordering.

Ordinal problems are all around us. For example, student satisfaction surveys usually involve

rating teachers based on an ordinal scale {poor, average, good, very good, excellent}. Hence,

class labels contain order information, e.g. a sample vector associated with class label “average”

has a higher rating (or better) than another from the “poor” class, but “good” class is better than

both.

Formally speaking, the ordinal regression problem consists of predicting the label y of an

input vector x ∈ X ⊆ IRK and a set of labels Y = {C1, C2, . . . , CQ}. In other words, x lies in a

K-dimensional input space and y is a label space of different labels/classes. The objective of

ordinal regression/classification is to find a function r : X → Y able to predict the labels of new

patterns, given a training set of N points, D = {(xi, yi)}i=1,...,N and considering an ordering of

the labels e.g. C1 ≤ C2 ≤ . . . ≤ CQ where ≤ defines the ordering relation between the labels.

A very simple approach for ordinal classification was proposed in [106], is chosen since

it only requires the preprocessing of the involved dataset without any change of the learning

algorithm with the only provision that the learned model can produce a probabilistic output (a-

posteriori estimates). The method transforms the original Q class ordinal problem into Q − 1

binary class problems and uses the probabilistic values of a classifier to predict the class value.

Sequentially a model is built to predict what is the probability of a given instance to belong at

any of the classes that are located higher than C1 higher than C2 and so on up to the probability

of the instance belonging to the “highest” class CQ. After that it is simple matter to find the class

with the highest probability using the following set of equations:

P[C1 | x] = 1− P[class ≥ C1 | x] (4.55a)

P[Cn | x] = P[class ≥ Cn−1 | x]− P[class ≥ Cn | x], for 1 < i < Q, (4.55b)

P[CQ | x] = 1− P[class ≥ CQ−1 | x] (4.55c)

(4.55d)

In the original work of Frank and Hall, C4.5 was the base learning method [106] for which

we used the Weka free software [108]. The approach works very well for zone 1 and zone
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3, with minimum overlap for the two “extreme” classes (class 1 and class 3). For zone 2 the

classification scheme is not so effective, even though again the overlap between classes 1 and

3 is very small, for class 3 which is misclassified as belonging to class 2. Therefore further

investigation is need for zone 2.

Confusion Matrix Predicted
C1 C2 C3

True
C1 346 20 0
C2 14 1914 192
C3 0 148 7337

Table 4.20: Results for Zone 1 using orginal classification.

Confusion Matrix Predicted
C1 C2 C3

True
C1 400 172 0
C2 14 2066 107
C3 1 4502 2709

Table 4.21: Results for Zone 2 using orginal classification.

Confusion Matrix Predicted
C1 C2 C3

True
C1 40 4 2
C2 21 5173 964
C3 0 859 2908

Table 4.22: Results for Zone 1 using orginal classification.

4.7 Application of Control Configuration Selection Methods

A LASSO model which was trained as described in 4.2.6 has been used for applying control

configuration selection methods. This method leads to linear autoregressive models as de-

scribed by (4.23). For the calculation of the RGA and the PEIA described in 2.2, we first obtain

the DC-gains of the system and the Frequency Response Function (FRF) formulated e.g., as a

discrete transfer function. By simply rearranging the coefficients in (4.23), we can reformulate

the model as:

y(t+ 1) =
N∑
r=0

Ar · y(t− r) +
N∑
r=0

Br · u(t− r) (4.56)

where y(t) and u(t) are the output and input vectors. To do this rearrangement, for each triplet

of indexes {i, j,m}, the coefficient aji (m) in (4.23) is placed as the element [Aj(t)]mi, and the

coefficient bji (m) is placed as the element [Bj(t)]mi. After this rearrangement, the multivariable
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discrete transfer function representing the FRF is calculated as:

Gz(z) =

(
I −

N∑
r=0

Ar(t) · z−r
)−1∑̇N

r=0
Br(t) · z−r (4.57)

The calculation of the RGA using (2.107) has to be adapted to discrete time systems. Mean-

ing that for the system in (4.57), the RGA is calculated as:

RGA = Gz(1)⊗Gz(1)−T (4.58)

Which for the system composed by the Oil actuators and the section temperatures results in:

RGA =

Oil1 Oil2 Oil3
0.6199 0.3801 0 T1

0.3801 1.7116 −1.0917 T2

−0.0000 −1.0917 2.0917 T3

(4.59)

And the DRGA is calculated as:

DRGA(ω) = Gz(e
jω)⊗Gz(ejω)−T (4.60)

which for the subsystem formed by the oil combustion and the temperatures results in the mag-

nitude in Fig. 4.30

Using the pairing rules stated in (2.2) we can conclude the following:

• The most appropriate decentralized controller is a diagonal controller with the following

pairings Oil1 − T1, Oil2 − T2, Oil3 − T3. This is validated by the analysis at of DC-gains

and also at higher frequencies.

• However, this controller involves the selection of a number of 2.0917, and values signifi-

cantly larger than 1 are related to ill-conditioned systems. So it is expected that the system

will be hard to control with a decentralized controller.

The decentralized controller configuration which has been in use at the plant prior to the initia-

tion of the studies in DISIRE is actually the same configuration than the one suggested by the

RGA as the most adequate decentralized configuration. The large values of the RGA indicate

that while decentralized control is possible, the performance degradation would be large, which

encourages the exploration of more complex configurations. This exploration will be performed

with the use of the PEIA which was created in DISIRE and is introduced in 2.2.4.

The calculation of the PEIA for the complete model results in

PEIA =

Oil1 Oil2 Oil3 In Gate Out Gate Exhaust
0.5346 8.1865 0.1323 0.0319 0.0604 7.6501 T1

0.0001 54.6701 0.5133 0.0002 0.1892 0.0478 T2

0.0000 1.7563 23.6595 0.0000 2.5628 0.0049 T3

(4.61)
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which suggests that, in addition to the connections used by the previously discussed decen-

tralized control, an adequate controller should also consider at least the exhaust flow and the

second combustion oil to control the temperature at the first chamber T1. Therefore, a potential

has been identified to improve controller performance by using a more complex control configu-

ration like e.g. with the use of an MPC controller.

4.8 Discussion of the results

Overall, we have presented an in-depth discussion and we have presented results on data-

driven modelling and predictive control for MEFOS’ walking beam furnace. Our analysis involved

an initial screening of the data in Section 4.1.2 with a discussion about data management and

filtering, a proposal for a meaningful evaluation of the predictive capacity of models in Sec-

tion 4.2.1 followed by a methodological approach to selection of variables in Section 4.2.2 using

Relief and the AUC of ROC approach. We then explored the possibility of deriving models based

on the physical heat-flow equations of the system which, however, did not yield fruit because of

the many assumption we had to draw and the luck of appropriate experiments to build such mod-

els. This analysis was useful for the derivation of grey-box models in Section 4.2.3, notwithstand-

ing. Then, we built and evaluated various other types of linear models in Sections 4.2.4, 4.2.5

and sparse linear models in 4.2.6 and, finally, nonlinear models in Section 4.2.8. For all these

models we evaluated their predictive ability using the proposed AV@R-based approach and,

more imporantly, we reconstructed the multistage probability distribution of their prediction er-

rors (at each time stage) using the scenario tree structure which was introduced in the previous

Chapter in Sections 3.1.1 and 3.1.2. We used all the above — models and scenario trees — to

build an advanced scenario-based stochastic MPC controller as detailed in Chapter 3. Finally,

we did not model the dynamics of the Oxygen using dynamical models — instead we proposed

a machine-learning based approach which is decoupled with the modelling and control scheme

wherein we associate how well a temperature-tracking controller behaves in terms of combus-

tion quality. This required meta-dynamical-models which predict the quality of combustion in

terms of the predicted average excess of Oxygen using machine learning classification models.

We also introduced key performance indicators, which will be detailed in report D2.3, and are

the basis for the evaluation of the closed-loop system.

As a footnote, a model based on data can be no better than the available data which were

used to construct it, therefore it should be noted that the models we present here are accom-

panied by a domain of applicability which is dictated by the coverage of the training data. It is

well known that closed-loop systems are much harder to identify because the system dynamics

needs to be distinguished from the controlled dynamics which tends to be at steady state.

It is recommended that the furnace operates in dual mode: in controlled mode a SMPC

controller tries to keep the temperatures at the three zones at desired set-points and the fur-

nace operates almost at steady state and in calibration mode, where the controller deliberately

creates the necessary variability (by administering random control actions) so that an adaptive

modelling module improves the system model.

From the above analysis, it seems that the ARX models presented in Section 4.2.5 are
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mostly suitable for the walking beam furnace and combine low complexity (which deems them

suitable for MPC implementations) with a good predictive ability. Nevertheless, the adaptive

modelling approach presented in Section 4.2.7 would be a lot more suitable for an online long-

term operation of the furnace where there are more data available.

Future trials with MEFOS’s walking beam furnace should be performed either in an open-

loop fashion where the controller is completely disconnected from the system4, or a random

error should be added to the controller’s actions or the measurements (so that the controller

receives false and perturbed measurements). An alternative, if possible from a practical point of

view, would be that during some periods of time, to short-circuit the controller’s set-point signal

with the controlled output, so that the deviation becomes zero and the controller provides no

control action.

4However, MEFOS would not like to perform such trials because of safety considerations.
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Figure 4.25: AUC of ROC for ranked feature selection at the three zones of MEFOS’s walking
beam furnace.

DISIRE D2.1 v1.2.pdf © DISIRE Consortium Page 113 of 174



H2020-SPIRE-2014 DISIRE

0 50 100 150 200
0

0.1

0.2

0.3

0.4
scree plot

0 50 100 150 200
0

0.1

0.2

0.3

0.4

n
o
rm

a
liz

e
d
 e

ig
e
n
v
a
lu

e

0 50 100 150 200
0

0.1

0.2

0.3

0.4

PCs #

Figure 4.26: Normalized eigenvalues for the training data from the three zones.
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Figure 4.30: Magnitude DRGA of the subsystem formed by the oil flow rate and the tempera-
tures.
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Chapter 5

Case study: Naphtha/LPG cracking
furnace

5.1 Introduction and problem statement

5.1.1 The process

We will first provide a technical description of the naphtha/LPG cracking furnace which will lead

to the proper statement of a control problem. A schematic of DOW Chemical’s naphtha/LPG

cracking furnace (henceforth, NLPGCF) is shown in Figure 5.1.

Following deliverable reports D1.X, we have identified that the manipulated variables of the

NLPGCF are

1. The damper positions at the exhaust of the furnace

2. The infeed valves (FG valves) which directly control the fuel supply rate

Some technical specifications as an addition to the specifications provided in deliverables

D1.X are provided in this paragraph. The naphtha infeed under normal operating conditions

varies between 20000 and 27000kg/h, while, when at start-up or shut-down this value is between

1000 to 20000kg/h. For normal operation, both limits should be treated as hard limits. The LPG

Figure 5.1: Schematic of the naphtha/LPG cracking furnace of DOW Chemical
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Variable Units
COT[1-8] ◦C
Draft[1-3] mmH2O
FGflowlowrange kg/h
FGflowhighrange kg/h
O2[A/B] %
CO[A/B] ppm
FGValve[A/B] %
Damper[A/B] %
WobbeIndex kcal/m3

Propanefeedflow kg/h
Naphthafeedflow kg/h
FGpressure[A/B][1-3] kg/cm2

Table 5.1: Variables of the NLPGCF and their units of measurement

(propane or butane) flow is between 16000 to 32000kg/h at normal operation while drops down

to 1000kg/h during start-up and shut-down modes. When the furnace is not working, or is in

off for maintenance, the naptha and the LGP flows are below 1000kg/h and either of the FG

valves are at a position which is below 20% (shut down). When the furnace is in decoking mode,

both napth and LPG flows are low (< 1000kg/h) and either of the FG valves is almost fully open

(> 80%). All other cases, correspond to unknown and likely faulty operation.

What is interesting for this application is to control the operation of the NLPGCF at normal

operation, so data which correspond to shut-down or maintenance phases, can and should

be neglected. The controller will be active only during normal operation. In our subsequent

analysis, we have ruled out all operating phases which are not classified as “normal operation”.

Typical coil outlet temperature (COT) values are about 840◦C to 860◦C for LPG and 830◦C

to 850◦C with naphtha (depending on the desired severity and selectivity ). The COT values

may vary in order to adjust the propylene/ethylene ratio (PER) of the furnace. The COT can be

modified by changing the set-point of the PER, so, the PER control system, effectively, controls

the COT.

The maximum allowed carbon monoxide (CO) concentration is 100ppm and the maximum

allowed excess of O2 is 2%. The excess of Oxygen should under no circumstances drop below

0% as this would inhibit the combustion and lead to incomplete burning. Values of O2 above 5%

cannot be tolerated for energy efficiency considerations, whereas, between 2% and 5% the limit

can be treated as a soft constraint in the parlance of control theory.

Following the above discussion, we have compiled Table 5.2. For the control of the cracking

furnace we may use two sets of manipulated variables: the fuel valve positions (there are two

such values, namely FGValveA and FGValveB) and the damper positions (there are two dampers,

DamperA and DamperB).

The control objectives for this process can also be inferred from Table 5.2: Variables COT[1-8]

need to be kept as close as possible to the cracking temperature set-point. Measured variables

such as Draft[1-3], O2[A/B] and CO[A/B] need to be kept within certain limits, while other

measured variables such as WobbeIndex are measured and provided to the controller.

Since most of the variables of the system are constrained — on some there are imposed

soft constraints which are not critical for the smooth operation of the process, such as the
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Figure 5.2: Inputs (Fuel gas valve and damper position), states (oxygen excess, carbon monox-
ide and flow of gaseous fuel) and disturbances (Wobbe index, propane/naphtha feed flow and
pressure of gaseous fuel) of the naphtha/LPG cracking furnace.

requirement that the excess of oxygen be lower than 2% while other constraints are hard such

as the operating range of valves. All at the same time, the plant operates under uncertainty: for

example, although the Wobbe index is measured and known at every time instant k, its future

evolution is ambiguous. The system dynamics is modelled by an approximate dynamical model

which introduces further uncertainty into the model and finally measurements are subject to

measurement noise. For these reasons, stochastic model predictive control will be the method

of choice in our approach.

The control objectives which will be reflected into the choice of the MPC cost function are

the following

1. Tracking of a specified COT set-point. Set-points are computed off-line. External skin

tube temperature (also called TMT – Tube Metal Temperature) is related with COT. Due

to coking process on the inner radiant coil surface, heat transfer resistance increases with

time in a relation such as Text coil = COT + (100 + 2.5day − of − run). In order to cope

with such phenomena and control the desired COT (set point) an increase in the fuel gas

mass flow is required.

2. Reduction of fuel consumption to achieve the desired goal

3. Retain O2 and CO within desired levels. The current practice is that O2 is assigned a fixed

desired set-point. This may be too restrictive as it creates a very stiff control loop. In fact,

there is no desired set-point for oxygen; just an operating window

4. Keep the draft pressure (Draft[1-3]) within desired limits

5.1.2 Data curation

A dataset of 2.52GB and 7.1 · 106 measurements was obtained from DOW Chemical’s DCS

system and was compiled into a CSV file by G-Stat which was then uploaded to Amazon’s

S3 storage service. An initial screening procedure was applied to the dataset to remove data

points which do not correspond to normal operating conditions and filter out entries with out-

of-scope measurements (e.g., negative Wobbe index) and NaN values. The sampling time is

10s, so the above data correspond to 821 days of operation of NLPGCF. This data was further

DISIRE D2.1 v1.2.pdf © DISIRE Consortium Page 118 of 174



H2020-SPIRE-2014 DISIRE

Variable Description Limits Role
COT[1-8] COT stands for “Coil outlet temperature”.

See report D1.2. There are 8 coils in
which steam flows together with a stream
of naphtha/propane. This is very well ex-
plained in Figure 37, p. 67 of D1.2.

As close to the set-point as
possible. Typical temperatures
are around 840− 860◦C.

T

Draft[1-3] Draft pressure (negative) −9 to −4 mmH2O; the draft
pressure should not drop be-
low −9 mmH2O. Values above
−4 mmH2O most likely mean
that the NLPGCF is in mainte-
nance mode.

T

FGflowlowrange FG low-flow flowmeter Measures flows up to
1100kg/h

M

FGflowhighrange FG high-flow flowmeter Measures flows higher than
1100kg/h. Typical FG flows
are roughly in the range 2000−
2500kg/h with propane feed-
stock and 3000−3500kg/h with
naphtha.

M

O2[A/B] Excess of oxygen in % Below 2%, always above 0%. It
is not acceptable at all if it is
above 5%.

M

CO[A/B] Carbon monoxide can be seen as a by-
product of the combustion. See Fig-
ure 5.3.

Maximum allowed value is
100ppm

M

FGValve[A/B] Position of the HC valve in %. 0 − 20%: the valve is totally
closed, 80 − 100% the valve is
completely open, 20− 80% the
valve is actually used to control
the flow of the incoming feed-
stock. Limits: 0− 100%.

MV

Damper[A/B] Damper position in % Position of the damper. Im-
portant note: Unlike FG-
Valve[A/B], for this variable:
100 − 110%: damper is to-
tally shut, 0 − 20%: damper is
fully open and 20 − 100%: the
damper is at some intermedi-
ate position. Limits: 0− 110%.

MV

WobbeIndex The Wobbe index is an indicator of the
Higher Heating Value of the FG. Using the
Higher Heating Value and the FG flow we
can calculate the amount of energy intro-
duced to the furnace. The Wobbe index
changes with the FG composition.

– M

Propanefeedflow Inflow of propane in kg/h. The NLPGCF
is operated either with naphtha or with
propane (two operating modes), but not
with both simultaneously.

During normal operation with
propane infeed, there is a min-
imum flow of 16000kg/h and
the maximum capacity of the
plant is 32000kg/h

M

Naphthafeedflow Inflow of naphtha in kg/h. Between 16000kg/h and
32000kg/h

M

FGpressure[A/B][1-3] Fuel pressure – M

Table 5.2: Variables of the NLPGCF. T: target, MV: Manipulated variable, M: Measured variable
(e.g., output).
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Figure 5.3: Combustion quality and the optimal combustion region.

processed to eliminate samples corresponding to maintenance mode, which is indicated by draft

pressure values greater than -4 mmH2O. On removal of such samples, the dataset was then split

into multiple experiments of normal uninterrupted operation (minimum 48 hours) with reliable

measurements. After curation, the dataset contained 24.34% samples of the original 7.1 · 106

measurements and was split into 30 experiments. For the purpose of model identification, we

use data from the experiment which has longest uninterrupted operation. Figure X shows the

time profiles of variables for the same experiment that has a duration of 30 days.

5.2 Data-based model identification of process dynamics

In this section we describe the approach to identify data-driven black-box models for the process

described by Figure 5.2. Since for control it is desirable to have low complexity models, we use

a similar approach as described in the previous chapter (Section 4.2) for identification of linear

black-box models. Section 5.2.1 briefly describes the modeling methodology. In Section 5.2.2

the results obtained with the identification approach are discussed in detail.

5.2.1 Linear auto-regressive models

Approach The main idea is to construct a linear model of the form (4.23). By observing the

output versus input plots, it was concluded that the dynamics is not linear and that a single LTI

model cannot describe the process. However, for a short period of time the process dynamics

can be approximated by a linear model. Hence, the strategy is to use a linear model identified

using a certain number of past statistical data of the process and then adapt it online using
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Figure 5.4: Time profiles of the measured variables for experiment having longest normal op-
eration (30 days). For better visualization of the noisy measurements, a Savitzky-Golay FIR
smoothing filter of 5th order was applied to the data with frame size of 5001.
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new information. From the time profiles (see Figure 5.4) of measured variables such as Wobbe

index, fuel feed flow, and FG pressures; it is apparent that the variation of these parameters

is slow considering the sampling time of 10 seconds. We assume that the influence of these

parameters which do not vary much for a short period of time can be neglected.

Moreover, we assume that the COTs are not influenced by damper positions, and the draft

pressures do not vary w.r.t. the FG valve position. This implies that we can identify two models,

one for COTs as outputs and valve positions as inputs whereas, the second model describes the

draft pressure dynamics with respect to damper positions. These two models being dynamically

decoupled, they can be cascaded into a single prediction model which would include all the

desired input-output variables described in Figure 5.2.

Identification technique For identification of the model described above, we use the least-

squares algorithm developed by ODYS which identifies an ARX model from input-output data.

The identification algorithms developed by ODYS also include the option to identify sparse mod-

els (Section 4.2.6), particularly suitable for large-scale processes. A key feature of the algorithm

is that it can process large sized data for identification using batch approach efficiently through

a recursive least-squares implementation based on linear algebra techniques. Furthermore, the

recursive algorithm developed can be used for efficient real-time model adaptation by using new

information without storing the past values of input-output data.

5.2.2 Results

In this section we present preliminary results based on the approach discussed above. We first

identify a model using past one hour data (360 samples) and then re-identify it with a batch

approach by using 180 new data samples and forgetting initial 180 samples from the previous

batch. These values (360, 180) are chosen rather arbitrarily for the purpose of demonstration.

In general, the number of samples used to initialize the recursive modeling and quantity of data

to be used in the new batch are flexible values which need to be tuned while considering the

quality of predictions. For both the ARX models (model 1 – COTs, model 2 – Draft pressures),

we tune the structure to have dependency on 5 past output and 3 past input values. The quality

of the adaptive model is evaluated by the PRMSE criterion described in Section 4.2.1. Using

first 350 hours of data (700 batches) shown in Figure 5.4 (without smoothing), we obtain mean

PRMSE values shown in Table 5.3 for model 1 and model 2. Figures 5.5 and 5.6 show the

PRMSE values with respect to time for different values of K (number steps-ahead prediction).

Table 5.3: Summary of system identification results for K steps-ahead prediction

K Mean PRMSE1 (◦ C) Mean PRMSE2 (mmH2O)
10 11.6222 0.4843
20 9.4924 0.4796
50 7.6161 0.4858
100 6.7868 0.5030
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Figure 5.5: PRMSE values with batch approach for K steps-ahead prediction
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Figure 5.6: PRMSE values with batch approach for K steps-ahead prediction

Discussion The mean PRMSE values in Table 5.3 indicate that the identified models can

predict as well for 100 steps-ahead without loss of quality as compared to 10 steps-ahead pre-

dictions. This is rather surprising, especially for the case of COTs as we notice better predictions

with increase in K. This is clarified on observing Figure 5.7 where we notice that the values

of COT do not vary appreciably even for 100 time steps and the resulting predictions are not

highly accurate due to the noticeable offset. The same was observed for models identified with

other batches of data. One reason for this is that the given data corresponds to measurements

of a closed-loop controlled process so the output variables track the set-point. This means that

the data is not rich in information about the process dynamics even for time periods as long as

1000 seconds. However, the data used to identify draft pressure model was better in quality

(more variation) resulting in a comparatively better model as illustrated in Figure 5.8. The plots

of PRMSE values shown in Figures 5.5 and 5.6 indicate that a linear model suffices to capture

the dynamics at majority of time instants. However, the presence of some spikes in the plots

indicates that there is scope of improvement. The adaptive modeling strategy with cascaded

structure and neglection of some measured variables discussed earlier can be concluded to

be suitable as the prediction errors were in acceptable range considering a stochastic control

strategy. This results in simple linear models for control as desired. In general it can also be

concluded that the closed-loop data needs to be sufficiently exciting besides having a suitable

model structure in order to obtain linear models of good quality.
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Figure 5.7: Validation of model 1 identified with first batch of data (PRMSE = 13.4687)
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Figure 5.8: Validation of model 2 identified with first batch of data (PRMSE = 0.2847)

Recursive approach The cracking furnace data is subject to noise and changes in environ-

mental or operating conditions with time. In order to tackle the influence of such factors, it is

essential to recursively identify the model at each step with higher weight on recent data. We

consider this approach for future work in order to obtain better results where the plan is to

implement the newly developed recursive algorithm.

5.3 Conclusions

The modelling and control of this process is more challenging than the walking beam furnace,

mainly for two reasons. First, because of the size of the dataset, batch processing methods on

the whole dataset are prohibitive as they require a tremendous computational power. Second,

the data are real process data and, therefore, are of lower quality with missing values that have

to be filtered out and worn out, faulty or generally more fluctuating sensors creating the need

to preprocess the data to filter out outliers and faulty measurements. The process is operated

normally in two operating modes: with naphtha and with LPG as input feedstock. At the same

time, the furnace may be either working, or in operating mode, so we cannot arbitrarily choose

some data (or even all the data) to build a process model. Last, and most important, the available

data are closed-loop data and the system dynamics it to a great extent concealed by the (MPC)

controller; as a result, the derived models cannot be considered reliable. WP2’s proposal is
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to run open-loop experiments and other experiments suitable for system identification (e.g., to

keep constant some inputs for some period of time – see the discussion in Section 4.8.

DISIRE D2.1 v1.2.pdf © DISIRE Consortium Page 127 of 174



Chapter 6

Case study: Network of conveyor belts

6.1 Introduction

6.1.1 General

The customer order to customer delivery of the mining is in theory a long, but in many cases not

too complicated process to model and control, although there are certain obstacles which still

make at least part of it challenging to control. The main reason for this is that the automation

level (limited integration between control systems, availability of sensors and a single access

point for data etc.) in the mine is rather low compared to other process industries including the

mining flotation process which has a normal standard of automaton maturity. In this chapter the

focus is only on the mine process from the face1 where the ore is mined to the mill just before

the flotation. The flotation might be excluded, but it is nevertheless the first customer of the ore

produced in the mine.

Coming back to the mine and the control of the material flow from the face to the mill, there

are semi-continuous ongoing ore producing blast cycles at the face or rather in the drifts of

the KGHM Lubin mine. Face location, time and ore mass from the blasts are considered as

inputs to the modelled process, but the control of these variables is not within the scope of the

current study. The reason is that the KGHM Lubin mine is a complex and big mine with many

faces, equipment, resources and activities ongoing at this stage, and it is too much work to take

scheduling of the blast cycles into account.

Also, it is a very large project to replace current blast scheduling2 in KGHM with an auto-

mated one in a mine of this size. Therefore, it is not possible to be able to take over the blast

scheduling of KGHM within the scope of this project, although how the schedule influences the

material flow in mines in general will be studied. ABB have made some initial simulations based

on a smaller mine in a previous project, where the blasts were scheduled together with the ore

transport out of the mine, and could hence be considered as free parameters.

The ore grade is varying in the mine at KGHM, and it can be divided into three different

lithological structures (sandstone, dolomite and shale). We will come back to this in the control
1In mining, the surface face is where the mining work is advancing. In surface mining it is commonly called pit face,

in underground mining a common term is mine face. Face equipment is the mining equipment used immediately at
the mine face used for removal and near-face transportation of the material: cutting machines, loaders, etc.

2Which typically consists in drilling, blasting, ventilation, scaling after blasting, bolting, concrete sparying, etc.
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problem once the ore is mined at the face, it is transported with LHD (load, haul and dump) to

a screen3 at the dump location above the conveyor belt. The screen is used to stop the ore

chunks above 40cm from falling into the conveyor, and to enable hydraulic hammers to crush

over-sized ore chunks into smaller ones that can pass the screen into the conveyor belt. It is

hard to know the origin of the ore on the conveyor belts; there are many dump locations at

the conveyor belts, the conveyor belts are running continuously and many locations are mined

simultaneously. We will come back to what is needed to track or know this in tests or in future

automation systems. The ore is transported over several conveyor belts on its way to the mine

hoist where it is skipped to the surface.

The conveyor belt system transports the ore from the hoist to the main separation screen

where the ore it is divided in two flows, one with ore finer than 25mm that can go directly into

the ball mill, and one with larger pieces that needs to be crushed first.

It is possible to measure the electric current on the electric motors that are driving the con-

veyor belts when the ore is transported on the conveyor belt system. The electric motors are

operated at known constant speed. The mass of the passing ore is measured at some locations

along the conveyor belt system. The ore flow could be quite easy to predict and follow through

the system, if there were no places where the ore could be stored. There are several places like

bunkers and other storage facilities along the transportation line where it is difficult to predict

how much ore is stored, how the incoming ore is mixed and when it will leave the storage. The

Lubin mine does not seem to have any level measurements at the bunkers. The bunkers are

just storage buffers between the conveyors that act as buffers for the material flow. If there is a

stop before or after the bunkers, they can be used to make the rest of the system less sensitive

to disturbances until technical problems are solved.

The bunkers pose the main challenge towards modelling and controlling the material flow.

This is because there is a limited number of sensors in the bunkers so it are not often — if

at all — any level measurements at the bunker and since the ore flow before and after will

include some error there will be an accumulated error in the determination of storage levels that

will cause the modelled level and the true level to drift apart resulting in overflowing or empty

storages. This in turn could lead to shut-downs affecting the entire material flow in the mine.

The ore level in a bunker has a maximum level for obvious reason. At some bunkers, the ore

level should not be too low, to avoid the bunker output feeder from getting damaged by incoming

ore. Therefore, some minimum ore level has to be maintained, to maintain a layer of ore acting

as a damper from the incoming ore.

Tracking the ore levels at the bunkers is a general control problem although now we are still

considering the ore as homogeneous, i.e., every piece of ore is of the same quality, which is

not realistic. Each ore piece is different and has different content, but this granularity level is not

possible to track in the mine. In the mine realistically each blast could get an individual identity,

due to the mixing at the blast and since the block model probably will not have higher level of

detail. Thus if this level of detail is needed in predicting the ore through the conveyor system, the

models need to keep track of the ore in the bunkers. This would be easy if the bunkers would
3Mechanical screening, often just called screening, is the practice of taking granulated ore material and separating

it into multiple grades by particle size.
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behave as a first-in first-out container, but they do not. We will come back to this later in this

chapter when we describe the more advanced storage models developed. In our first modelling

approach we have used FIFO models to get the system up and running.

The block model is a model that describes the ore content in the mine and the mine has a

prediction of the ore content in every blast based on drill holes made in the prospection phase

and with better material tracking these models will improve. The hoist is the simplest, yet the

most expensive part in the transportation, and it takes long time to increase the number of shafts,

so this is the bottleneck of most mines, and this is the main reason why the bunker levels as well

keeping the conveyors running is very important. Since the mine hoist is operating continuously,

it is crucial that the ore flow is constantly coming to the mine hoist. Lost production in the hoist

cannot be gained back.

To make sure that the models developed in the project are as generic as possible there

have been and will be examples of mines with trucks and trains in the modelling, simulation and

control evaluation.

The idea has been to first make a basic mine model for the simulation framework and then

during the project these models will be extended and improve based on real data and measure-

ments from the Lubin mine as well as simulations results from the developed advanced models.

In the second half of the project different cases and mines will be simulated and evaluated.

Based on this in the end of the project there will exist control concepts that could be possible to

implement in a real mine. The goal is to reach as close as possible to some MPC solution.

6.1.2 Underground transportation system in KGHM s.a. mines

The transport systems used in the copper mines were chosen and designed for the room and

pillar mining system. Taken into consideration were factors such as the methods of mining and

loading, the properties of mined material, the ore flow characteristics, and the required capacity

and length of transport routes.

The characteristic feature of the horizontal transport in the three KGHM mines is the use, at

the various stages and on a different scale, of both cyclic transport (LHDs, trucks and rail trans-

port) and the high-capacity continuous transport (belt conveyors). The transport function within

mining panels in all the copper ore mines is carried out by LHDs feeding the ore onto trucks.

The trucks transport the ore to mining panel reloading points where it is dumped directly onto

a screen functioning as a classifier. Oversize lumps left on the screen are crushed mechani-

cally by hydraulic hammers controlled by an operator who monitors the dumping proceeds. The

screen is situated over a chute that feeds the belt conveyor via a vibrating feeder. The feeder

discharge panel is positioned 60cm above the belt so the impact of material falling on the belt is

mitigated. Up to several loading points with either fixed or vibrating screens can be set up along

the route of a single conveyor.

Ore leaving mine panels is usually stored in panel storage bunkers that have a form of

blind shafts. The panels can have either one storage bunker, as is the case of Lubin mine, or

one bunker may be servicing two or more panels (Rudna mine). In the Lubin and the older

part of the Polkowice-Sieroszowice mine, the primary transport from the panel bunker to ore

loading pockets that adjoin the shafts is provided by conveyors or by rail. Rail car loading
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stations are used for conveyors to load the trains and car dumps are used to unload trains in

the shaft area. The latter are either of tipple type (Lubin and Polkowice-Sieroszowice mines)

or bottom dump cars are used (Polkowice-Sieroszowice mine). Rudna mine uses only belt

conveyor transport. The newer part of the Polkowice-Sieroszowice mine has a mixed primary

transport system where it is possible to transport ore from panels to shaft both by rail or a series

of belt conveyors. The mine also has a system of belt conveyors that allows to transport ore to

the adjacent Rudna mine.

Surge stockpiles, whose purpose is to provide an efficient interface between the continuous

and cyclical transport system play a major role in transportation systems. There is a need to

store output in stockpile to average the erratic flow of the ore coming from mine panels and to

match the transportation capacities of various links in the transportation system, many of which

operate at different output levels and at different times. Stockpiling material in panels and by the

shaft loading stations makes the panel operation independent of that of shaft, and both of these

independent of the main transport system. As a result, it is easier to organize the work of all the

links in the ore transport system and to utilize the equipment to its full capacity.

Short breakdowns of individual links of the transportation system do not interfere with oper-

ation of other links and do not restrict system capacity. Construction of bunkers and stockpiles,

although costly and time-consuming, is justified by benefits it brings to organization of work and

to utilization of workforce and equipment. As a result it improves the overall economics of mining

operations.

6.1.3 Technical specifications

The whole analysed underground BC system of the Lubin mine is presented in Figure 6.1. The

system consists of 3 main branches:

1. Left branch (conveyors: N465 – T1, L44 – L41 and the railroad leading to the T2 conveyor).

The T1 conveyor supplies the ore to the one 1000 t shaft bunker that feeds the skip. Notes:

At the moment only the conveyor line N465 – T1 operates. The second transportation line

consisting of belt conveyors line L44 – L41 and the railroad has not operated for the last 6

months. This means that the ore is supplied to the shaft R1 only by conveyors.

2. Right branch (conveyors: L1031 – P1 and its subbranches: C1701 – C106, L910b – L142,

M41a – L52). The P1 conveyor supplies the ore to the second 1000 t shaft bunker that

feeds the skip. There are no switches between the shaft bunkers nor the possibility of

enlarging their capacity.

3. Bottom branch (conveyors AS34/7 – A34/1, A15, S2A – S2, S310, S320 – M21, E3 and

the railroad to the shafts).

The work of the conveyor belt system is managed with regard to the following constraints

and rules:

1. There is a serial connection between an ore bunker and belt conveyors – a conveyor belt

supplies a bunker which then supplies the consecutive conveyor belts, there is no bypass

of this connection,

2. An ore bunker can be either opened to supply the next conveyor belt or closed; no partial

opening is feasible,
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Belt ID Length (m) Speed
(m/s)

Head pul-
ley to drive
station

Weigth to
head pulley

Loading
points to head
pulley

Bunker to
head pulley

P–1 300 2.5 39.5 X X X
P–2 820 2.5 25 X X X
P–3 990 2.5 11,5 X P-36a – 948.5 X
P–4 700 2.5 13 X X

b1 682.5
b2 691

P5a 350 2.5 250 X X X
P6 1020 2.5 225 175 970 X
P7 1250 2.5 50 X X X
P8 1350 2.5 15 X

I. 465
II. 770
III. 1225

1340

L142 950 1.94 150 30
I. 400

II. 675
III. 980

X

L910b 750 2 165 X
I. 400

II. 750

X

P9 1350 2.5 150 800 755 X
L52 1300 2 170 X

I. 340
II. 590
III. 1300

b1 870
b2 1160

M41a 1150 2.5 225 X
I. 375

II. 675
III. 875
IV. 1150

X

L413 830 2 175 275 830 X
A183 710 2.5 100 55 710 X
L161 1250 1.94 50 X

I. 650
II. 850
III. 1250

X

L1031 800 2 75 X
I. 410

II. 800

X

Table 6.1: Key data of the belt conveyors of the right branch of the Lubin mine BC system.
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3. The shaft ore bunkers are controlled by shaft operators, the bunkers inside the conveyor

belt system are controlled by a foreman on the spot,

4. A division ore bunker is usually open (not filled up) to maintain the continuous flow of ore

and closed only in case of stoppage the conveyors succeding the bunker. This allows

mining divisions not to stop supplying the ore onto the loading points of preceding BCs,

5. The above rule does not apply to the large “East” bunker (4500t) that supplies the P4 BC.

This bunker is used for systematic storing the ore since Monday till Friday which is then

released during the “non-mining” shifts in a weekend (when mining divisions do not mine

the ore from mining panels).

6. The actual level of ore in a bunker is controlled by a gauge which automatically stops the

preceding BCs when the ore reaches the top crest of the bunker. Practically (including the

“dead” margins in the bottom and the conical shape on the top formed due to the angle of

repose) some 80% of the theoretical bunker capacity can be used,

7. The division BCs usually operate since the first loader or truck discharges ore onto a

screen in the loading point up to the end of the shift. There were undertaken tests of

temporary switching off the BCs but the savings were considered to be smaller than the

decrease of ore supply involved.

8. Moreover any stoppage of not fully emptied BC means that it has to be then started when

loaded which raises the start-up, dynamic belt tensions and can cause premature fatigue

of belt splices. Therefore the staff responsible on BC maintenance was reluctant to imple-

menting the strategy of switching off and on partially loaded conveyors.

9. BCs are switched on and of in cascades. A cascade consists of all BCs between ore

bunkers. All BCs in one cascade have to be switched off. The preceding cascade can

operate until the bunker between them is fully filled.

10. The start-up procedur of a BC takes approximately 30 seconds.

11. Conveyors that are supplied by a bunker and another BC (like P4) can be supplied simul-

taneously by both sources. In case of the risk of overloading, the priority is given to the

preceding conveyor over the preceding bunker.

12. The shaft bunkers are considered to be too small and provide the limited storing capacity.

6.2 Data collection

Ideally all sensors and data needed are available for identifying and tracking the material flow,

but this is not the case in practice. The first basic simulation framework and models are up and

running in Matlab and the next step is to obtain actual data from KGHM to tune and improve the

model to fit the real KGHM Lubin mine. A complementary to the existing real data in the mine

could be to conduct RFID tests which would improve the success probability of material flow

modeling. At this stage the tests presented below are not confirmed.

There is a number of tests using RFID technology to track the ore that could be performed to

get valuable input data to the evaluation of the material flow in the mine. These measurements

need to be performed if one needs to validate the models and the material flow in an accurate

and detailed way.
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Figure 6.1: Schematic overview of the Lubin mine with planned RFID drop positions as red
circles and planned RFID identification antennas as yellow rectangles.

1. RFID tags will be sent along the conveyor belt system from a few selected positions (at

least one), together with the ore when it enters conveyor belts at the dump places, and

track by antennas their way to the flotation. One RFID sensor/antenna after each storage

would give a good picture of the entire material flow as well as the duration in the bunkers

and some rough estimation of the bunker levels.

2. (Alternative to 1) RFID tags will be sent along the conveyor belt system from a few selected

positions (at least one), together with the ore when it enters the conveyor belts at the dump

positions, and tracked by one or more antennas overground close to the flotation.

3. One test to validate only the storage models in the bunkers above ground

4. (Extension of 3) A second step would be to perform more extensive tests on a single

storage where RFID could be placed in many locations on the surface of feed into the

storage and then the antenna would be just outside the storage, this would give better

input of the behaviour of the mixing in the individual storage and this could be valuable in

identifying storage mode and the mixing properties.

Tests above ground are more likely since this requires less resources and permits. The

basic models are already in place, but it is expected that the models need to be tuned and

improved once more data are available. Later it could be possible to make a test or two per

week to calibrate the material flow and storage levels etc. A schematic overview of the Lubin

mine with planned RFID drop positions as red circles and planned RFID identification antennas

as yellow rectangles is presented in Figure 6.1. Figure 6.2 shows a breakdown of the schematic

overview of the Lubin mine, in order to fit the simulation framework that has been developed for

this project.
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Figure 6.2: Break down of the schematic overview of the Lubin mine, in order to fit the simulation
framework that is developed for this project.

6.3 Modelling and Simulation Framework

A basic framework is in place, where ore transport out of a mine can be set up and simulated.

The ore transport in a mine can be constructed using a library of Matlab functions that has been

developed for this purpose in this project4. The library contains functions for initiation, connec-

tion, simulation and plotting the mine. The simulation model is in discrete time and it is sampled

using a fixed time step. The ore dynamic is discretised by volume along the transportation.

Some equipment contains more than one sample. Incoming ore from different samples and

from different locations are can be mixed when it enters the samples of an equipment.

6.3.1 Ore handling equipment models

Below are the models implemented in the Matlab simulation framework. These models will be

improved and extended to fit the Lubin mine in greater detail once more real data becomes

available.

6.3.1.1 LHD

LHDs move ore from face to other ore-handling equipment periodically. The simulation can be

performed with noise added to the time period.
4The IPR status of this library is confidential.
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6.3.1.2 Trucks

There are no models for truck transports in the mine implemented yet.

6.3.1.3 Grid

The grid is limiting the ore flow out. This is a simple simulation of the operation of a hydraulic

hammer poking around and hammering larger rocks into smaller ones at the grid.

6.3.1.4 Conveyor belt

Ore can be fed at inputs at one or several positions along the conveyor belt. The belt is assumed

to run at fixed speed. The ore leaves the belt at its end position. The conveyor belt is sampled

in time domain.

6.3.1.5 Train

A train can collect ore from several places and leave it at other places. The ore is mixed on the

train.

6.3.1.6 Store

The type of store that implemented so far is a FIFO store and it has a fixed number of positions,

or samples. Each sample has an upper volume limit. The first sample is filled up before next

sample is filled. Ore is taken from the last sample until it is empty. Ore will then be taken from

previous sample.

6.3.1.7 Hoist

The hoist can be in four different states: At the bottom, on the way up, at top or on the way

down. Ore can be filled into the hoist when it is at the bottom. Ore can be taken out of the hoist

when it is at its top position. The hoist calculates how much space there is left for ore, in order

for up-stream equipment to limit the output to the hoist. The hoist can also limit the output if

downstream equipment requires so. The ore is mixed in the hoist.

6.3.1.8 Crusher

The crusher is not implemented as a specific model. A store with small maximum output rate is

used to model crushers at the moment.

6.3.2 Simulation framework

An example of a simple mine with three conveyor belts and a hoist is presented in Figure 6.3.

The figure is a snapshot of the simulator during simulation, with graphics update activated.

Conveyor belts C1 and C2 transport the ore to conveyor belt C3. C3 transports the ore to store

S1. The hoist H1 brings the ore from S1 to store S2. Triangles indicate that there is a heap of
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Figure 6.3: A simple mine with three conveyor belts and a hoist.

Figure 6.4: A simple mine with three conveyor belts and a hoist.

ore on the grid where the ore is dumped on the conveyor belt. “X” indicates the position of a

RFID-tag. There is one RFID-tag on C1, one in the hoist, and two in S2. Green colour on the

store/hoist indicates the relative ore level. Green turns to red to indicate “full”. The thickness of

the green lines of the conveyor belts indicated the level of the ore at specific positions on the

belts.

An example of a simple mine with a train, a crusher and a hoist is presented in Figure 6.4.

The figure is a snapshot of the simulator during simulation with graphics update activated. The

train T1 transports the ore from the stores S1a, S1b and S1c to the store S2. The ore that is

leaving S2 is crushed before it enters store S3. The hoist H1 brings the ore from S3 to store S4.

Triangles indicate that there is a LHD or truck that fill a store. “X” indicates the position of a RFID-

tag. There are two RFID-tags in S1a and one in the S2. Green colour on the store/train/hoist

indicates the relative ore level. Green turns to red to indicate repletion.

A schematic view of the small part of the KGHM mine is presented in Figure 6.6. This part

of the mine was built up in the simulation framework.

An animated simulation of the small part of the KGHM mine is presented in Figure 6.6. The
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Figure 6.5: Schematic view of a small part of the KGHM mine with four conveyor belts followed
by a store, and finally two more conveyor belts.

Figure 6.6: Simulation of a small part of the KGHM mine with four conveyor belts followed by a
store, and finally two more conveyor belts.
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Figure 6.7: Simulation at four different time instants.
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model consists of four conveyor belts followed by a store, and finally two more conveyor belts.

The figure is a snapshot of the simulator during simulation, with graphics update activated.

Conveyor belts C1 to C4 are operating in sequence and they transport the ore to store S1. Two

more conveyor belts continues the ore transportation. Triangles indicates heaps of ore on the

grids where the ore is dumped on the conveyor belts. “X” indicates the position of RFID-tags.

There is one RFID-tag on C3,. Green colour on the store indicates the relative ore level. Green

turns to red to indicate 100% repletion. The thickness of the green lines of the conveyor belts

indicates the level of the ore at specific positions on the belts.

In Figure 6.7 shows how the ore flow and RFID position is changing over time. The upper-

most sub-figure to the left is the first figure, the uppermost figure to the right is the second figure,

etc.

6.3.3 Advanced storage models

Since the bunker/storage models is the most difficult and important part in the modelling of the

conveyor system and for future control, a lot of effort has been put into the storage modelling.

The first approach was to look at cellular automata (CA) and later the plan is to evaluate storage

models with SPH or similar.

6.3.3.1 The cellular automata approach

The first approach for the advanced storage modelling was to use the statistical method of CA.

The cellular automata (CA) approach is a powerful modelling technique for describing and

simulating complex behaviour of physical systems, without paying much respect to the physical

processes actually involved (Chopard & Droz, 1998 [109]). The approach is based on a log-

ical abstraction where each element is defined to be self-replicating according to simple and

repetitive transition rules that change the elements internal state, where the rules are either de-

terministic or probabilistic (based on some criterion) (Martinez & Masson, 1998 [110]). Each cell

within the lattice is therefore assigned a set of state variables that can be said to represent the

physical state of that cell (Hallberg, 2011 [111]). A more formal definition of the CA is presented

by Chopard and Droz (1998) [109], where they state the formal requirements that is needed:

1. A regular lattice of cells covering a portion of a d-dimensional space

2. A set Φ(r, t) = (Φ1(r, t),Φ2(r, t), . . . ,Φm(r, t)) of Boolean variables attached to each site

of the lattice and giving the local state (r) of each cell at the time t = 0, 1, 2, . . .

3. A rule R = (R1, R2, . . . , Rm) which specifies the time evolution of the states in each time

step.

It is important to remember that the time and space always is discrete in a CA and that the

rules for the transitions is homogenous for the entire lattice, even though some inhomogeneity

can be introduced, typically because of the conditions for neighbouring cells (Chopard & Droz,

1998 [109]). The neighbouring cells, which can be defined as the cells in the spatial region

surrounding the central cell that are expressed within the demarcation for the rule set of the

updating cells (Chopard & Droz, 1998 [109]). The neighbouring cells can include just the nearest
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Figure 6.8: Examples of neighboring cells: a) Von Neumann neighborhood; b) Moore neighbor-
hood. (Source: Hallberg, 2011 [111]).

cells or cells even further away (Hallberg, 2011 [111]). Different rule sets often come with

different types of neighbourhoods which can be seen in Figure 6.8.

At each time step, the neighbourhood is identified so that the correct transition can be made

based on the switching rules for this specific environment (Hallberg, 2011 [111]). As long as the

CA approach is kept deterministic, the outcome of a certain environment will always give the

same evolution, but sometimes it is useful to add a degree of randomness to the rules (Chopard

& Droz, 1998 [109]). This is for example of interest when a certain situation can lead to several

probable outcomes and changes for the states (Chopard & Droz, 1998 [109]) similar to the

scenario-based approach discussed in Chapter 3. The probabilistic cellular automata is a very

useful generalization since it allows the user to more easily model flow rates and velocities that

is a common factor when dealing with physical systems, since the only parameters that govern

the particle motion are the transition probabilities and the dimensions of cells [112].

CA have been used and developed since the 1940s in many different research fields and

areas (Chopard & Droz, 1998 [109]). Some of the most commonly application areas are flows

of a fluid, a gas or a granular medium within specific volumes (Martinez & Masson, 1998 [110];

Chopard & Droz, 1998 [109]). The computational efficiency of the method is largely because of

the fact that the calculations only pay respect to the neighbouring cells and not the whole lattice

and therefore only a small amount of information is taken into account (Hallberg, 2011 [111]).

According to Martinez and Masson “Despite their extreme simplicity, the degree of agree-

ment with actual flows is very satisfactory” [110]. Osinov (1994) [112] has used the CA approach

to model the deformation and flow of loose materials within solid walls in order to account for the

effects of loosening (decrease in density) during the material discharge. Osinov (1994) identifies

the following advantages with the CA approach [112]:

1. The algorithmic simplicity and minimal number of mathematical operations which makes it

not require large computational resources

2. The possibility of application of the model to 3D flows, even though it is known that an

extension like this comes with considerable complications.

3. The possibility of adequately model the flow near the free surface

4. The absence of restrictions for the value of deformations which enables us to trace the

process of flow up to any stage

Savage (1993) proposed a model for the simulation of hopper flows based on a randomness
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Figure 6.9: Mitigation rule 1 (Source: Kozicki and Tejchman, 2004) [114]

Figure 6.10: Mitigation rule 2 (Source: Kozicki and Tejchman, 2004) [114]

in the way that the void travels from the opening to the top of the hopper [113]. This is done

by introducing a lattice of cells, where each non-empty cell has a probability of falling into the

empty cell located in the closest neighbourhood. Savage (1993) introduced the lattice shown in

Figure 6.9, where three cells are located directly over the empty cell (marked with an H) [113].

Kozicki and Tejchman (2004) used a similar type of model but developed it further, adding

more cells into the lattice rules which enabled the model to be better at imitate a real-world

hopper [114]. Figure 6.10 presents one of the mitigation rules that they proposed.

They also developed 3D models and hexagonal models, which has been considered but has

not been evaluated.

The conditions of course comply that the following sum has to be fulfilled:

5∑
j=1

pj = 1 (6.1)

6.3.3.2 Description of CA

The model that was developed is based on the theory of probabilistic cellular automata, where

small particles in the silo are being modelled by small squares and where each cell movement

is based on the neighbourhood and a probability factor. The cells in the model can be of one of

the following three types:

1. The cell that is occupied with a hole

2. The cell that is occupied with a part of the wall

3. The cell that is occupied with a particle

The second state, the cells that makes up the wall, is the only fixed state that remains the

same during the entire execution of the lattice cells. The other ones will follow the probabilistic

transition rules. In reality the cells that is occupied with a particle would be divided into several
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Figure 6.11: Silo simulation (at different iterations) with asymmetrical calculations from the left
to the right.

subgroups due to the difference in size, weight and density of the material.

6.3.4 Asymmetrical behaviour inherited from the theory

In the Matlab code, the calculations are carried out from the bottom and up since the “holes”

are created at each iteration where the opening is modelled to be. At each row the calculations

are performed from one side of the silo to the other, and a movement is taking place if a hole is

present surrounded by particles.

In Figure 6.11, the calculations are performed from the left to the right, which gives an

interesting asymmetrical behaviour where the particles in the left side of the silo have a higher

tendency of moving out towards the opening.

Due to this behaviour, a random factor was introduced before the iteration starts that ran-

domises the calculation order in each row and therefore evens out the symmetry which can be

seen in Figure 6.12. It is also interesting to notice that the calculations for the new model is

much slower (which can be seen in the extended amount of iterations that it takes for the silo to

be emptied).

6.3.4.1 The probability choice

The only factors of importance that can be varied in the model is: the size of the silo (the amount

of particles), the inclination of the silo and the movement probability of the particles where the

latter is the only one that have a significant impact on the behaviour of the material. Since the

behaviour is symmetrical, the two parallel particles (2–4 and 1–5 in mitigation rule 2) will have

the same probability of filling up the hole. Therefore, it is only 3 parameters of interest for the

entire silo behaviour, but the results are still very interesting. Even though the model is heavily

based on a random function, it still exhibits behaviours of stagnation at different parts of the silo

which corresponds very well with the theories according to different flow zones and stagnant
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Figure 6.12: Silo simulation (at different iterations) with a randomised calculation order in each
row. Top left: 1 iteration; Top right: 4000 iterations; Bottom left: 12000 iterations; Bottom right:
18000 iterations.

zones. The most active flow zones in the silo simulation almost lets the particles through in a

FIFO-manner, the less active zones will reduce the particle speed and sometimes even submit

it to total stagnation.

The first visualisation, shown in Figure 6.13, shows the behaviour when the centre probabil-

ity, p2, is set to zero which almost can be likened to the mass flow situation which was presented

in the theory section.

The second visualisation, shown in Figure 6.14, shows the behaviour when the middle prob-

ability, p2, is set to 0.6 which is similar to the funnel flow behaviour of the silo.

The disallowed case where the sum of pj is greater than 1, creates some interesting be-

haviour, where the outflow movement is curved upwards which can be seen in Figure 6.15.

6.3.4.2 Inflow simulation

When ore are being added to the silo during discharge, the random function is still applicable,

which makes the particles shatter in an unnatural way, which can be seen in Figure 6.16 at

iteration 2100. In the case where a particle is not surrounded by neighbouring particles it is

obvious that gravity would have the biggest impact on the particle movement (since there is no

wind in the silo) and therefore the probability that the particle falls straight down would be closer

to zero.

If the position of the inflow is changed so that the material is added at another part of the

silo, it is obvious that Schwedes flow areas in the theory is a part of this simulation, which can

be seen in Figure 6.17.

6.3.4.3 The efficiency of the model and how to speed it up

A reference test on how to improve the execution time has been performed, in order to compare

different solutions.
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Figure 6.13: Silo simulation (at different iterations) with angle of 60 degrees and the probabilities
p2 = 0, p1 = p3 = 0.25 and p4 = p5 = 0.25. Top left: 1 iteration; Top right: 1800 iterations; Bottom
left: 3900 iterations; Bottom right: 4500 iterations.

Figure 6.14: Silo simulation (at different iterations) with angle of 60 degrees and the probabilities:
p2 = 0.6, p1 = p3 = 0.1 and p4 = p5 = 0.1. Top left: 1 iteration; Top right: 1800 iterations; Bottom
left: 2700 iterations; Bottom right: 3900 iterations.
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Figure 6.15: Silo simulation (at different iterations) with angle of 0 degrees and the probabilities
(with a total sum over 1): p2 = 0.6, p1 = p3 = 0.3 and p4 = p5 = 0.3. Top left: 1 iteration; Top
right: 400 iterations; Bottom left: 2800 iterations.

Figure 6.16: Silo simulation (at different iterations) with angle of 0 degrees and an inflow from
the middle (in red color). Top left: 2100 iteration; Top right: 3300 iterations; Bottom left: 5100
iterations; Bottom right: 5700 iterations.
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Figure 6.17: Silo simulation (at different iterations) with angle of 0 degrees and an inflow from the
left (in red color). Top left: 2400 iteration; Top right: 3200 iterations; Bottom left: 4000 iterations;
Bottom right: 5200 iterations.

As a first step, the Profiler built-in function in Matlab was used in order to reduce the ex-

ecution time of the code as much as possible. As a second step, MEX-files of the while-loop

functions was made, using the Xcode Compiler and the built-in Matlab function Matlab Coder.

From the beginning, the execution time were almost 51 seconds and after using the profiler

analysis, the execution time went down to 36 seconds. The time for the calculations (without

the plotting) were 24.78 seconds and this was reduced to 7.34 seconds after the conversion to

C-code of some of the main functions (through Matlab Coder). Furthermore, the C code can

now be used without the need to install Matlab.

Parallelisation of the code has been considered, but not tested.

6.3.4.4 Smooth particle hydrodynamics

The statistical model (CA) developed so far have shown good results, but it has some limitations

when it comes to 3D modelling and does not include particles of different size. To be able to

include this in the model the plan is to work evaluate the storage model with smooth particle hy-

drodynamics (SPH) later, so far only some minor investigation in the area have been performed

although it seems promising. A lot of work have been made in the area of SPH in related areas

so hopefully this results can be used as a base for further development for the material flow.

One of the challenges and potential with this approach is the possibility to work with different

particle sizes to really be able to understand the material flow in the silo. This can later be used

for advanced control of the material flow.

6.3.5 Ore mass flow models

The ore transportation model given in Section 6.3.2 requires, inter alia, the input data describing

the ore mass discharged on each grid. Then the general transportation model provides the ore
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mass flow on each conveyor. In particular, the flow on conveyors charged by bunkers will be

provided. In order to enable transportation simulation, a model of ore flow on the conveyors

supplied only by grids has to be provided. In the following paragraph a compound Poisson

process is investigated. The model parameters are fitted using real data provided by the Lubin

mine, thus such models could be used as real-world scenarios. In order to validate the ore

mass flow given by the general transportation model on conveyors supplied by bunkers, we also

provide stochastic models of the flow on such conveyors (the second paragraph of this section).

Parameters of these models are also estimated using the real data provided by the Lubin mine.

Both kinds of the ore flow models are validated using statistical tests. Thus, these models could

serve as reliable input data for the general transportation model and a benchmark of the storage

models.

6.3.5.1 Modeling of ore flow in belt conveyor system with cyclic charging

Introduction

In analyzed data the ore is supplied to the grid cyclically. It is related to the time which the

loader spent on an ore transportation from the mining face to the dumping point. One conveyor

belt can be supported by several loaders, which transport the ore from different mining faces. In

this paragraph we fit a stochastic model to the real data acquired from conveyor scale located

on a conveyor supplied by the grid only. We model arrival times of the loaders and ore mass

charged by them. Such model could be used then as an artificial input data to the general

ore transportation model. We fit the models, estimate their parameters and validate the results

using statistical tests. This ensures reliability of the conclusions that could be drawn from the

simulation study.

The application of compound Poisson process to the ore flow on the grid and the conveyor

belt seems to be relevant in this problem. The compound Poisson process is defined as:

Xt =

Nt∑
i=1

Yi, (6.2)

where {Nt}t≥0 is homogeneous Poisson process with the intensity parameter λ and Yi are

independent and identically distributed (i.i.d.) the random variables. The process Nt can be

considered as the moments of loaders’ arrivals to the dumping point. To estimate parameters of

theNt process we use times between consecutive discharges, which will be called waiting times.

The amount of ore discharged by the loader will be treated as the random variable Y described

by a distribution function and called increments. In that approach two tasks are essential:

• estimation of intensity λ of the homogeneous Poisson process {Nt}t≥0 based on real data,

• fitting the distribution of compound Poisson process increments Yi and estimation of its

parameters.

Generally, the continuous-time stochastic process {Nt}t≥0 is homogeneous Poisson process

(HPP) with the intensity parameter λ > 0 if [115]:

• {Nt} is the counting process,

• the waiting times are independent and identically exponentially distributed.
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To solve above problems it is needed to analyze the real data of the weight of ore supplied

on the conveyor belt. The data acquired from the weight measurement system installed on the

conveyor belt of ID L413 will be taken to show the results of the proposed methodology. This

conveyor is not supplied by any other conveyor or any bunker, moreover it is supplied by only

one grid. Its length is equal to 830 meters and the nominal speed is 2 m/s. The available data

include the measurements of weight from November 2015 to March 2016. To use collected data

it is necessary to clean acquired signals from outliers observations and measurement errors.

In this report we present general results based on the pre-processed data. The entire pre-

processing scheme as well as the entire modeling results are provided in Deliverable D5.1.

In Fig. 6.18 we present the investigated data of the ore mass transported through the con-

veyor scale. It is a binary signal. Each value of 1 might be interpreted as one metric tonne of

ore transported through the conveyor scale. Zeros does not stand for idle state (no ore on the

conveyor belt), since it usually takes a few seconds for a one tonne to be transported through the

scale. In Fig. 6.19 one can see zoom of Fig. 6.18 with discharging moments marked. The time

elapsed between each discharging is called waiting time (see Fig. 6.20a). The weight related

to each discharging is presented in Fig. 6.20b. These data constitute a base for modeling of

the ore mass flow in the case of cyclic transportation. Long waiting times are related to breaks

in transportations, thus these longer than 1500 seconds are not taken into consideration in the

analysis. Moreover, weights lower than 1 tonne and higher than 40 tonnes are not considered

due to technical reasons (a single LHD or a truck cannot transport more than 40 tonnes here).

Figure 6.18: Cleaned differentiated weight data from L413 conveyor belt (March 2016).

Estimation of intensity of the Poisson process {Nt}t≥0

The estimation of the intensity λ of the Poisson process {Nt}t≥0 starts with by fitting a kernel

density estimator to waiting times data from each month from the period between November

2015 and March 2016. As one can see in Fig. 6.21a the shape of the kernel density estimator

is similar for different months. It may suggest that variables describing behaviour of waiting

times have the same distribution. The differences between particular months are reflected only

in the parameters of this distribution, thus in further analysis we investigate a single month, i.e.

November 2015. The entire analysis are provided in deliverable D5.1.

The variable describing distances between two consecutive points of a homogeneous Pois-

son process are exponentially distributed with the intensity parameter λ > 0. The cumulative

distribution function in that case is defined as [115]:
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Figure 6.19: Differentiated weight data from L413 conveyor belt: a) data acquired from 10th
March 2016, b) data acquired from II shift at 10th of March 2016. The moments of beginnings of
discharging are marked by red stars.

Figure 6.20: a) Waiting times for i-th discharges, b) weight of ore mass supplied on the conveyor
in i-th discharge.

F (t) = 1− e−λt, t > 0. (6.3)

Remind that in our case the described variable is related to the waiting times. One of the

solutions for estimation the intensity parameter λ is fitting the exponential function f(x) = ae−bx

to the tail of the empirical distribution function, which is defined as follows [115]:

F̂n(t) =
1

n

n∑
i=1

1{xi≤t}, (6.4)

where xi is the i-th observation. Now it is easy to define the tail of the empirical distribution

function as 1− F̂n(t).

The tails of the empirical distribution function from real data are showed in Fig. 6.21b. The

non-linear least squares method [116] was used to fit exponential function to the tail of empirical

distribution function. The results of the analysis are presented in Fig. 6.22. The estimated b
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Figure 6.21: For waiting times of each month between November 2015 and March 2016 there
are presented: a) fitted kernel density estimator and b) tails of empirical distribution function

parameters of exponential function for November 2015 is equal 0.003. The values of a parameter

is close to 1, so the assumption about exponential distribution of tails is fulfilled. Therefore the

intensity estimator λ̂ of the homogeneous Poisson process is equal to the estimated parameter

b equals 0.003.

Figure 6.22: Fitted exponential function f(x) = ae−bx (red line) to the tails of empirical distribu-
tion function (black line) related to data from November 2015. Estimators of a and b parameters
are showed on the plots.

Estimation of the compound Poisson process increments

Assuming that analysed signal follows compound Poisson process the increments Yi are

i.i.d. random variables. Clearly, the proper distribution has to be fitted to the data. Analysed

data sample consists of ore mass, which flow through the grid. Obviously, the mass cannot be

smaller than zero, hence only non-negative distribution can be fitted. In modelling process we

tried to fit some positive distributions. Let us firstly recall some of the well-known distributions

that can be useful in this case.

Let Z be a Gaussian random variable with mean equals to µ and variance σ2. Then the

random variable X = exp(Z) is log-normal. Its probability density function (pdf) fX(x) and
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cumulative distribution function (cdf) FX(x) are given by following equations:

fX(x) =
1

xσ
√

2π
exp

(
−(ln(x)− µ)2

2σ2

)
,

FX(x) =
1

2
erfc

(
− ln(x)− µ

σ
√

2

)
,

where x > 0, µ ∈ R, σ > 0 and erfc(x) = 2√
π

∫∞
x e−t

2
dt is the complementary error function.

When the parameter σ is small the log-normal distribution can be similar to normal one. On the

other hand, for large σ the tails are semi-heavy [115].

The second analysed distribution was the Gamma one. It is described by two parameters

shape k > 0 and scale θ > 0, then the probability density function and cumulative distribution

function are following:

fX(x) =
1

Γ(k)θk
xk−1 exp

(
−x
θ

)
,

FX(x) =
1

Γ(k)
γ
(
k,
x

θ

)
,

where x > 0, Γ(·) is a gamma function and γ
(
k, xθ

)
=
∫ x
θ

0 tk−1e−tdt is a lower incomplete

gamma function. It is worth mentioning that the sum of k i.i.d. exponentially distributed random

variables
∑k

i=1Xi follows Gamma distribution with shape parameter k and scale λ−1, where λ

is an intensity of the Xi.

Another non-negative distribution, which we tried to fit, is the Weibull distribution. It also

depends on two positive parameters: λ - scale and k - shape. For x ≥ 0 the probability density

function and the cumulative distribution function are given by the formulas:

fX(x) =
k

λ

(x
λ

)k−1
exp

(
−
(x
λ

)k)
,

FX(x) = 1− exp

(
−
(x
λ

)k)
.

In case of k = 0 the Weibull distribution reduces to the exponential one.

Finally, let us present the three parameters family of positive Burr distribution. Its probability

density function and cumulative distribution function are:

fX(x) =
kc
α

(
x
α

)c−1(
1 +

(
x
α

)c)k+1
,

FX(x) = 1− 1(
1 +

(
x
α

)c)k ,
where x > 0, α > 0 is the scale parameter, c > 0 and k > 0 are the shape parameters. This

distribution is very flexible and can express many types of real data. The limit distribution when

k → ∞ is the Weibull one [117]. In Fig. 6.23 there are presented probability density function

estimators for the weights distribution. One can observe that the distributions are bimodal,

hence none of the previously introduced distribution can be fitted directly. In order to overcome

this problem we would like to analyze the mixture of the distributions. Namely, let us assume
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Figure 6.23: Comparison of histogram for real data, kernel density estimator and several mix-
tures of fitted distributions.

that X is a random variable which probability distribution function fX(x) is following:

fX(x) = pg1(x) + (1− p)g2(x), (6.5)

where p ∈ [0, 1] is a mixing parameter, g1(x) and g2(x) are the probability distribution functions.

One can observe that it is a linear combination of two other probability distribution functions.

Clearly the similar relation can be observed in the cdf:

FX(x) = pF1(x) + (1− p)F2(x), (6.6)

where F1(x) and F2(x) are the cumulative distribution functions related to g1 and g2 respectively.

Using such mixing techniques we are able to create a wide class of the distributions. Each

distribution with the explicit form of pdf can be applied. Moreover, as one can expect it is

possible to create bimodal density functions.

The parameter estimation for such mixture of distributions can be performed with Maximum

Likelihood Estimation (MLE) method. For the vector of independent observation x = (x1, . . . , xn)

and the set of the distribution parameters θ the estimation is done by maximizing the log-

likelihood function:

max
θ
{L(θ)} = max

θ

{
n∑
i=1

f̃(xi; θ)

}
.

The method can be easily applied for the distribution with known pdf. In Fig. 6.24 there is

presented a flowchart of the estimation method. One can observe that MLE method is used

to estimate the set of parameters for densities g1(x) and g2(x) with a priori given value of the

mixing parameter p. In order to find the best p the Kolmogorov-Smirnov test is performed. The

test statistics is defined as:

K(θ, p) = max
x
{|FE(x)− FT (x)|} ,

where FE(x) is the empirical cumulative distribution function and FT (x) is the fitted theoretical
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Figure 6.24: Flowchart of the modeling scheme in case of ore supplied from the bunker. Pre-
processing step is included.

cdf. The statistic measures the maximum distance between the theoretical and empirical cdf.

Hence, minimizing the value of the K(θ, p) we are able to chose the best value for the mixing

parameter. This procedure allows us to fit the bimodal distribution to the data.

In Fig. 6.23 the fitted densities are presented and compared with the normalized histogram

and the kernel density estimator. Some of the distributions explain the data really good. Indeed,

especially mixture of log-normal and Weibull distributions fit to the observation. They are able

to detect both modes in the data. One can observe that only mixture of Gamma distributions

significantly differs from the real data.

In order to ensure the correctness of the fitting, the statistical tests can be performed. Ob-

viously, the Kolmogorov-Smirnov test can be applied. Let us also recall three other tests based

on the empirical distribution function: Kuiper test, Cramer-von Mises test and Anderson-Darling

test. Let us assume that F (x) is a true cdf of the random variable X and zi = F (xi), where Z is

uniformly distributed on (0, 1) and zi is a realization of Z. Then the distance between empirical

cdf of zi and uniform distribution are the same as for empirical cdf of xi and its true cdf [115] for

any i = 1, . . . , n. This fact can be used in computation of the test statistics. Let us assume that

z(1) < · · · < z(n) are the order statistics of z then the test statistics (V - Kuiper, W 2-Cramer-von

Mises, A2-Anderson-Darling) are following:

V = max
1≤i≤n

{
i

n
− z(i)

}
+ max

1≤i≤n

{
z(i)− i−1

n

}
,

W 2 =

n∑
i=1

(
z(i) −

2i− 1

2n

)2

+
1

12n
,
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A2 = −n− 1

n

n∑
i=1

[
(2i− 1) log z(i) + (2n+ 1− 2i) log(1− z(i))

]
.

Having four statistical tests we are able to compare the results for different distributions. In

order to calculate test p-value, the Monte Carlo method can be applied. Namely, the n-long

random vector from assumed distribution with estimated values of parameters is generated

10000 times. Then for each random vector the test statistics are computed and compared to the

test statistics for real data. The p-value is given by equation:

p− value =
#(TSi > TR)

10000
,

where TSi is a test statistics for i−th random vector and TR is a test statistics for real data.

The output of the tests is presented in Tab.6.2. For November the best results are obtained for

mixture of Burr distributions. The test results ensure us that the fit of mixture of two positive

distributions can by beneficial in case of modelling the ore weight.

Table 6.2: Test statistics and the p-value for different mixing distributions and estimation per-
formed by algorithm presented in Fig.6.24.

Mix distribution K p-val V p-val W 2 p-val A2 p-val
November 2015

Gamma 2.13 0.00 4.05 0.00 1.09 0.00 7.19 0.00
log-normal 1.48 0.01 2.46 0.00 0.35 0.13 2.28 0.03
Weibull 1.42 0.03 2.82 0.00 0.38 0.06 2.99 0.02
Burr 1.30 0.04 2.58 0.00 0.20 0.21 2.05 0.05

Conclusions

In this report there was considered the problem of modeling the process of loaders’ arrivals

to the dumping point and the mass of the ore supplied on the conveyor belt. The compound

Poisson process was considered as a mathematical tool describing that stochastic process.

Firstly, we pre-processed weight data from the conveyor belt to obtain information about waiting

times between two consecutive loaders’ arrivals and the discharged ore mass. Then the homo-

geneous Poisson process was identified as a process model of the waiting times. Based on the

fitted exponential function to the tail of the empirical distribution function, the intensity parameter

was estimated. The next step was to identify the distribution of the variable describing supplied

ore mass. Since the kernel density estimator fitted to the real weight data revealed the bimodal

probability distribution function, we considered the mixture of the different distributions with the

mixing parameter p. The best mixture of distributions were selected by statistical test and their

parameters were estimated using Maximum Likelihood Method (MLE). The analysis were per-

formed for the data from November 2015 and conveyor L413 in order to present the methodology

of modeling such kind of process. The modeling results are validated using statistical tests, thus

simulations based on the model can be considered as close-to-real data.
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6.3.5.2 Modelling of ore flow in Belt Conveyor System with continuous charging from
retention bunker

Introduction

The ore mass on the belt conveyor can be contained in separable heaps or in relatively

constant ore mass flow. The first case primarily characterise the ore supplied from the grid,

and the second one characterise the case when the ore comes from the retention bunker. The

retention bunker task is to fulfil one of following purposes:

• equalise the level of ore mass flow,

• provide the constant character of ore mass flow,

• store the mined ore in place where the haulage switches from district to main.

In this report the problem of modelling ore mass flow from retention bunker is undertaken. It will

be shown that in general, the process describing how the flow of ore mass falls from retention

bunker can be modelled with relatively low order ARMA process .

The base for this report analysis are recordings from belt conveyor L212 from Polkowice-Sieroszowice

copper ore mine which transports ore mass from retention bunker. The belt conveyor is equipped

with a conveyor scale which collects the data describing temporary mass. The data consists of

periods that have stationary or changing character and in this report only the stationary ones

will be considered (as they describe the ore flow from retention bunker). To validate the results

an exemplary segment with relatively constant temporary mass will be analysed. The entire

analysis is performed in D5.1.

Methodology

In this section all essential definitions and algorithms which were the part of the analysis are

included.

Definition 1. [118]

Time series {Xt} is weakly stationary if

1. µX(t) is independent of t,

2. ∀h, γX(t+ h, t) is independent of t,

where µX(·) and γX(·, ·) are mean and covariance function respectively.

In the following part of this report, whenever the term ’stationary’ is used in time series

context it means that the time series is weakly stationary.

Definition 2. [118]

The time series {Xt} is an ARMA(p, q) process if it is stationary and ∀t it satisfies

Xt − φXt−1 − ...− φpXp = Zt + θ1Zt−1 + ...+ θqZt−q, (6.7)

where {Zt} ∼WN(0, σ2) and polynomials 1−
∑p

i=1 φiz
i and 1+

∑q
i=1 θiz

i do not posses common

factors.

Classical ARMA version assumes that {Zt} ∼ N (0, σ2)

Theorem 1. [118]

Stationary solution of Xt − φXt−1 − ...− φpXp = Zt + θ1Zt−1 + ...+ θqZt−q for {Xt} exists (and

DISIRE D2.1 v1.2.pdf © DISIRE Consortium Page 156 of 174



H2020-SPIRE-2014 DISIRE

is unique) if and only if

φ(z) = 1− φ1z − ...− φpzp 6= 0,∀|z|= 1. (6.8)

Modelling time series {Xt} with ARMA requires {Xt} observations being made at fixed con-

stant time intervals, namely t ∈ t0 +k∆t, k ∈ N, where ∆t- time interval. When dealing with time

series whose time intervals are varied one can interpolate the values in new time points (which

are distributed equally) with e.g. linear interpolation.

Definition 3. [119] A random variableX with distribution f has characteristic function defined

as

φX(t) =

∫
R
eitsf(s)ds = EeitX (6.9)

Definition 4. [115,120] A random variable X is from α-stable distribution with parameters:

• α- index of stability (α ∈ (0, 2])

• β- skewness parameter (β ∈ [−1, 1])

• σ- scale parameter (σ > 0)

• µ- location parameter (µ ∈ R)

if and only if it’s characteristic function φX(t) appears as

log φ(t) = {
−σα|t|α{1− iβsign(t) tan πα

2 }+ iµt, α 6= 1

−σ|t|{1 + iβsign(t) 2
π log|t|}+ iµt α = 1

(6.10)

and it is denoted as X ∼ Sα,σ,β,µ

In most cases the form of α-stable random variable’s probability density function is unknown

in terms of elementary functions (with exceptions: α = 1- Cauchy distribution, α = 2, β = 0-

normal distribution, α = 0.5, β = 1 Levy distribution, α = 0.5, β = −1 Levy distribution reflection).

Definition 5. The time series {Xt} is an ARMA(p, q) process with α-stable residuals if it is

stationary and ∀t it satisfies

Xt − φXt−1 − ...− φpXp = Zt + θ1Zt−1 + ...+ θqZt−q, (6.11)

where polynomials 1−
∑p

i=1 φiz
i and 1 +

∑q
i=1 θiz

i do not posses common factors, and {Zt} is

a time series of independent identically distributed (i.i.d.) random variables from α-stable distri-

bution.

The problem of evaluating optimal model order is often solved with use of Akaike information

criterion (AIC) [121]. However when dealing with models that has residuals from α-stable distri-

bution one has to use e.g. modified AIC [122] as the classical one requires to know the form of

distribution function. The modified AIC uses approximation of probability distribution function.

The value of AIC is evaluated as follows:

AIC = −2
N∑
i=1

log pSα,σ,β,µ(Zi) + 2p, (6.12)
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where pSα,σ,β,µ is approximated density function, Zi are residuals of the model, p- number of

model parameters. The criterion suggests that the model is optimal when the AIC is minimized.

Definition 6. Let {Xt} be a time series which is ARMA process. Its periodogram is defined as:

In,X(λ) = | 1

n1/α

n∑
i=1

Xte
−iλt|2, (6.13)

where −π < λ < π

To estimate the parameters of ARMA model Whittle estimator βn is used [123]. The method

is universal as it does not require any assumptions about residuals’ distribution. The estimator

is defined as a value which minimises following function:

σ̂2
n(β) =

1

n

∑
j

In,X(λj)

g(λj , β)
, (6.14)

where λj = 2πj
n ∈ (−π, π], β = (φ1, ..., φp, θ1, ..., θq)- ARMA(p, q) estimated parameters, g(λ, β) =

|1+
∑q
k=1 θke

−iλk|2
|1−

∑p
k=1 φke

−iλk|2 , −π < λ < π.

The parameters of residuals distribution is obtained from following characteristic function

relation [115,120]:

log(− log|φX(t)|2) = log(2σα) + α log|t|, (6.15)

where φX(t)- characteristic function of X ∼ Sα,σ,β,µ.

The equation above depends only on α and σ which suggests to estimate parameters by re-

gressing y = log(− log|φn(t)|2) on w = log|t| in the model:

yk = m+ αwk + εk, k = 1, 2, ...,K, (6.16)

where m = log(2σα), tk is an appropriate set of real numbers (e.g. tk = πk
25 , k = 1, 2, ...,K,

and K from {9, ..., 134} [124]). When α̂, σ̂ are obtained, the α, σ are fixed at these values, and

the estimates β̂, µ̂ can be obtained from

arctan(
Im(φ(t))

Re(φ(t))
) = µt+ βσα tan(

πα

2
)sign(t)|t|α. (6.17)

Next the regressions are repeated with α̂, σ̂, β̂, µ̂ as initial parameters. The iterations con-

tinue until previously fixed convergence criterion is satisfied.

To test the differences between the empirical distribution Fn(x) and the estimated one F (x; θ)

of residuals (θ- estimated parameters’ vector) 5 different tests are used (Kolmogorov–Smirnov,

Kuiper, Cramer–von Mises, modified Cramer–von Mises, Anderson–Darling). These tests are

based on following statistics:

1. D = max(D+, D−) = max(max1≤i≤n{ in − z(i)},max1≤i≤n{z(i) − i−1
n }),
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2. V = D+ +D−,

3. W 2 =
∑n

i=1{z(i),−2i−1
2n }

2 + 1
12n

4. U2 = W 2 − n( 1
n

∑n
i=1 z(i) − 1

2)2

5. A2 = −n− 1
n

∑n
i=1{log z(i) + log(1− z(n+1−i))},

where z(i), i = 1, ..., n is sample i-th order statistics.

We test the null hypothesis [115]:

H0 : Fn(x) = F (x; θ), (6.18)

against the:

H1 : Fn(x) 6= F (x; θ). (6.19)

Small values of test statistics T (any of previously proposed), for sample from distribution

F (x; θ) confirm H0, and the large values give evidence to reject the null hypothesis and accept

H1. The decision is to made upon the tests’ p-value quantity which is defined as:

p− value = P (T ≥ t), (6.20)

where t is statistic’s value for sample which distribution is estimated. Common p-value which

borders acceptance and rejection of H0 is 0,05. The probability is estimated with Monte Carlo

simulations.

The complete block diagram how the temporary mass data is modelled and simulated with

ARMA model with residuals from α-stable distribution is included in Fig. 6.25.

Application

In this report temporary mass signal of belt conveyor L212 is analyzed. The conveyor is

located in Polkowice-Sieroszowice copper ore mine. The raw signal needs to be pre-processed

due to outliers. In this report we present only a modeling result based on an exemplary part of

the measurements dated from 15th June to 30th September. The chosen segment is presented

in Fig. 6.26.

The signal was subjected to modified AIC criterion to obtain optimal ARMA order. The results

can be seen in Tab. 6.3. The table also includes the parameters of optimal model.

Segment 1.
AR part order 1
MA part order 2
φ1 0.8456
θ1 -0.1081
θ2 -0.1492

Table 6.3: Optimal ARMA order and estimated parameters

After the optimal ARMA orders and parameters are obtained, residual signal might be com-

puted. Their sample autocorrelation and partial autocorrelation functions are included in Fig. 6.27.
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Figure 6.25: Flowchart of the estimation method for the mixture of the densities parameters
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Figure 6.26: Chosen segment of temporary mass.

Figure 6.27: Sample autocorrelation and partial autocorrelation functions of the residuals

The analysis of Fig. 6.27 leads to a conclusion that for each segment residuals are sequence

of independent random values. This suggest, that the ARMA models are fitted properly.

The QQ-plots of residuals empirical distribution (vs standard normal distribution) can be

seen in Fig. 6.28.

Based on results presented in Fig. 6.28 one can observe that the residuals distribution

possess heavier tails than the standard normal distribution. Thus it was determined to check

whether the residuals belong to α-stable distribution which is characterized by heavy tails. In

Tab 6.4 the p-values of 5 different tests are included.

The p-values in Tab. 6.4 do not give reasons that the residuals do not belong to α-stable

distribution as all values are greater than 0.05. Thus, the α-stable distribution was fitted to resid-

uals.

In Tab. 6.5 there are estimated α-stable parameters of residuals distribution. The parame-

ters are estimated by regression method [115].

Based on results included in Table 6.5 one can observe that residuals are characterised by α

parameter (index of stability) significantly lower than 2, which is indication of heavy tails. The
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Figure 6.28: Residual quantiles vs quantiles of standard normal distribution

Table 6.4: p-values of 5 statistical tests, namely Kolmogorov–Smirnov, Kuiper, Cramer–
von Mises, modified Cramer–von Mises, Anderson–Darling

Segment 1.
p-value D 0.6880
p-value V 0.6060
p-value W 2 0.6700
p-value U2 0.5440
p-value A2 0.3980

Table 6.5: Estimated α-stable parameters

Segment 1.
α 1.6548
σ 25.1136
β -0.2498
µ 0.3557
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scale parameter that is higher than 25. All distributions are left-skewed. Considering high scale

parameters, location parameters are nearly close to 0.

Statistical analysis proved that the ARMA model with α-stable innovations is a suitable model

for the considered signal representing ore mass flow on the conveyor supplied by the bunker.

Such model and its parameters can be exploited in the future as a benchmark for the general ore

transportation model. Comprehensive analysis of more signals related to the conveyor supplied

by the bunker is performed in deliverable D5.1.

Conclusion

In this report problem of modelling the retention bunker originated temporary mass with

ARMA process with residues from α-stable distribution was undertaken. The report is based

on temporary mass signals from belt conveyor L212 that is placed in Polkowice-Sieroszowice

copper ore mine. The signal was dated from 15th June to 30th September. Five different seg-

ments which were registered during the time when the retention bunker was opened and the

temporary mass possessed relatively equal characteristic was chosen.

For each of these segments the optimal order of ARMA model was fitted. For received models

residuals were computed and tested whether they are from α-stable distribution. The confirma-

tion of these tests allowed to fit α-stable distribution to residuals. With fitted distribution it was

possible to generate random variables from corresponding distribution. This allowed to simulate

the process of temporary mass. Multiple iterations let the build of quantile lines which confirmed

that the ARMA model with residuals from α-stable distribution precisely describe the temporary

mass which originated from retention bunker. The fact that the result was repeated for each

of the segments can be treated as an evidence that the retention bunker originated temporary

mass can be modelled with ARMA process in general.

6.4 Key Performance Indicators

The most important KPI for the mine is the number of tonnes of ore produced per unit of time.

The most important goal is, therefore, to maximise the production, given available equipment.

The hoist is the bottleneck and it is important that the production is not limited by other parts in

the transportation system. If the origin of the ore is known and the predicted time when it will

come to the crusher and the ball mill it is possible to predict how close to maximum capacity the

equipment will be operating, as the geological data contains information about the type of ore,

its hardness and the distribution of the size of the ore.

More than 25% of the vehicles in the KGHM mine are RFID-tagged today (2016), and all

new vehicles are RFID-tagged. When all the necessary equipment is in place and all LHD and

truck transports can be tracked in the mine, then it is possible to track the ore from the faces to

the conveyor belts. If the conveyor belt system models are available and able to describe the

ore transport out of the mine and geological data are available where the ore is mined, then it is

possible to predict the ore flow and also the ore contents all the way to the flotation.

A large number of transportation tasks are executed in parallel in the mine. If information

about equipment, production and store levels is updated continuously to a control system, then
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the tasks can be scheduled automatically. The schedules will not need to be completed as

planned, as deviations between estimations and actual outcome with respect to time, moved

ore, and due to machine breakdown etc. may occur. The model can be updated and new better

schedules can be made automatically as information is fed back from the mine to the control

system. The schedules can be made for longer time horizon, in order to get rid of apparently

sub-optimal solutions, and still be able to react instantly, and propose better scheduling as

response to every status update about the mine.

A secondary KPI is the occupancy of the conveyor belts and other active transportation

element of the transportation network as detailed above. In case a conveyor belt is not occupied,

it makes sense to switch it off in anticipation of new ore arriving. Of course it does not make

sense to switch off the conveyor belts only for a few seconds, just to switch it off immediately

afterwards, so the conveyor belt motors should be turned off only if they are to remain switched

off for a minimum period of time, otherwise, not only do motors consume manifold amounts of

energy at start up, but such an operation is likely to damage the motors. Overall, the objective is

to decrease the amount of energy required to transport the ore. The occupancy of the conveyor

belts will be determined in the percentage (%) of time when they are loaded with respect to the

time when they are running and the controller’s goal will be to maximise the occupancy while

respecting the imposed constraints (e.g., minimum off time). Clearly, such a control system

should be able to have adequate foresight to predict the upcoming occupancy of the conveyor

belts, so a dynamical system model is required.

6.5 Model predictive control

Since the mine is far from being a closed loop control problem today, it is hard to propose any

classic MPC solution at this stage. The aim is to work on control from a more basic level that

first focus on what is needed to increase the automation level in the control and to evaluate the

different control strategies of mines with conveyor system and mines with trucks/trains where

conveyors very often are a compliment to the trucks and trains.

6.6 Conclusions and future work

The work has initially focused on the development of a basic version of a modelling and simu-

lation framework. Later, more accurate models can be added as well as simulation and finally

control functionality. At this first stage, the focus was to make a modular framework that de-

scribes the material flow all the way from the face to the mill. Already in an early phase, the

storage was identified as the main player to get the material flow under control.

CA has been initiated to get a first understanding of the possible modeling. The developed

CA model seems to be working well and it can most likely be used to simulate data that can

be used to develop a better basic model or as is in the framework, since the performance is

promising. To get even more information around the storage modeling, also SPH is considered

to be used later in the project. In the first modelling attempts of the KGHM mine, only limited

process knowledge was used to get a fundamental, but hopefully from a modelling perspective
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correct model structure of mine. The next step is to increase the collaboration with KGHM and

to retrieve more information about the conveyor system, and then later receive real data, that

can be used to develop better models and tune them to the Lubin mine. Up until know, the

control problem of the material flow in the mine has just been evaluated loosely, to make sure

that the model developed later are suitable for control. Even if the detailed investigation is yet to

come we suspect, due to the limited instrumentation etc. in the mine, that it is not possible to get

all the way to a closed loop MPC solution. Once more information around the KGHM process

is gathered, next step in the development is to evaluate the best and most promising control

solution for the KGHM conveyer system, as well as other underground mining processes.
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Chapter 7

Conclusions and planned work

7.1 Conclusions

In this report we have presented various methodological tools for modelling and control, espe-

cially in a data-driven fashion as in Section 2.1; the algorithms we developed for data-driven

system identification (and compressed sensing which is, in some sense, a dual problem to iden-

tification) are based on the assumption that the process data are available in a stream, rather

than stored for offline batch processing. This makes such methodologies particularly useful for

online adaptive identification which aligns with the spirit of DISIRE’s data-driven proposition.

Furthermore, we have shown that the proposed online methodologies are approximately one

order of magnitude faster than all other existing streaming approaches — a fortiori faster than

any batch processing approach.

We focused on the formulation and efficient algorithmic solution of data-drive algorithms such

as streaming-recursive compressed sensing in Section 2.1.1, steaming online model identifica-

tion in Section 2.1.2, data-driven scenario generation in Sections 3.1.1 and 3.1.2, and scenario-

based stochaastic model predictive control in Section 3.2.

In Chapter 3 we presented a complete control scheme which is suitable for the control of

the industrial processes of WP7 (walking beam furnace) and WP8 (NLPG cracking furnace).

Stochastic model predictive control is an advanced control approach where the inevitable un-

certainty which acts on the system is modelled using scenario trees and without any restric-

tive assumptions regarding the shape of their probability density functions (e.g., normality as-

sumptions) or assumptions of independence or Markovianity. Instead, we pursue a completely

data-driven approach to model these random processes which we then incorporate into the

formulation of the MPC problem.

We applied the proposed methodologies in the case study of the walking beam furnace in

Chapter 4 following all steps from data-driven control-oriented modelling to scenario generation,

formulation and solution of stochastic MPC which was used to produce closed-loop trajectories

in simulations. In Chapter 5, we provide some initial modelling results.
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7.2 Planned work

WP2’s plan of actions for the current and coming period will focus on the following items

1. How SMPC can be solved online very efficiently: we have been experimenting with a

gradient-based algorithm which is based on the LBFGS method to solve scenario-based

stochastic optimal control problems using the forward-backward envelope of the dual opti-

misation problem

2. Development of anomaly/fault detectors using conventional mutlivariate methods (Princi-

pal Component Analysis, Canonical Variate analysis) as well as machine learning methods

(one class classifiers, autoencoder neural networks) for monitoring of the processes and

application to the NLPGCF case study

3. Use of deep learning techniques for dynamic modelling of the existing processes (deep

recurrent neural networks, Long Short Term Memory (LSTM) networks) and for state eval-

uation (Deep belief networks, Convilutional Neural Networks for the case of images etc)

4. Use of causality analysis for building more robust predictive models

5. Implement the algorithm of Task 1 on GPU and provide a solver for large-scale stochastic

MPC problems

6. We are currently working on a proposition of a new risk-aware formulation of a stochastic

model predictive control problem where the expectation operator (which is risk-neutral) is

replaced with a risk-sensitive operator (such as the average value at risk). We will propose

a computationally tractable formulation of this risk-averse MPC problem along with a solver

and provide stochastic stability conditions

7. Perform further simulations with SMPC for WP7 and WP8: demonstrate the suitability of

the SMPC control approach and quantify its benefits using KPIs

8. Continue our initial modelling exercise using nonlinear machine-learning-based models for

the processes of WP7 and WP8, especially to the extent that we will receive data from new

campaigns; validate these models and provide pertinent statistics

9. Develop models which will allow us to predict the average concentration of Oxygen (or

Oxygen excess) and the concentration of carbon monoxide for the combustion processes

in WPs 7 and 8 using machine learning techniques

10. Perform such modelling exercises on the cloud-based system designed and implemented

by G-stat

11. Use PAT data to reconfigure the SMPC controllers based on existing machine learning

models and the ones that will be produced by planned task 3

12. Revisit the control problem formulation for WP5

13. Calibrate the bunker mass flow models in Chapter 6 using measurements for the mine

using RFID tags

In Table 7.1 we outline the distribution of the planned work per partner (task numbers refer to

the above enumeration).
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Task No. Partners
1 IMTL, LTU
2 LTU
3 LTU, IMTL
4 LTU
5 IMTL, ODYS
6 IMTL
7 IMTL, LTU, ODYS
8 LTU, IMTL (Campaigns by DOW Chemical and MEFOS)
9 LTU, IMTL
10 ODYS, IMTL, LTU
11 IMTL, LTU
12 WUT, KGHM-CUP, ABB, IMTL
13 ABB, KGHM-CUP, WUT

Table 7.1: Distribution of planned work per partner.
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