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Chapter 1

Definition of KPIs

1.1 About

In this document we provide a detailed description of the necessary procedure from the stage

of proof-of-concept to the stage of application of the proposed control schemes in an industrial

environment. The main focus is on the introduction, mathematical formulation and computation

of key performance indicators for the industrial processes of DISIRE as well as a more general

proposition for the process industry at large. The assessment framework is based on the prin-

ciples we explain in Section 1.2 and then special attention is given to each one of the industrial

applications of WP5, WP7 and WP8 separately where we present quantifiable results.

1.2 Assessment of performance

1.2.1 Critical points

The assessment of performance of industrial applications from the perspective of control has

received little attention as such because it is usually studied in a per-case fashion. Only recently

has the need for a more holistic definition of widely acceptable KPIs been identified. Here,

with the help of the industrial partners of DISIRE, we have tried to identify the main types of

performance assessmenent following a general-to-specific approach. Before we proceed to a

further discussion of performance assessment, there should be first a distinction between two

basic approaches to performance assessment: in silico and in situ. For every performance

indicator we consider important that we propose a computationally feasible way to evaluate it

before it is measured in an industrially relevant environment. We may, therefore, say that the

very general term performance assessment refers to any of the following

1. Assessment of the quality of measurements and measuring devices, in comparison to

other measuring devices, or with respect to the measuring noise as well as their reliability,

life span and rate at which they produce outliers

2. Data availability, delay in the transport of data, reliability in transportation (e.g., packet

loss) and storage. Availability of a data management system.

3. Responsiveness of actuators
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4. Smoothness and reliability of the overall operation of the process via fault detection;

assessment of how prone the process is to fault

5. Assessment of the closed-loop performance of the plant (will be discussed in further

detail hereafter)

6. Quality of the final product

7. Impact on the environment, such as emission of pollutants and assessment of the short-,

mid- and long-term possible effects to the environment

8. Economic sustainability of the process given its (installation and) operating cost, the

additional technology/innovation cost and how it relates to the balanced benefit it brings

about given the improvement of other KPIs, the price of the final product and the margin

for reduction on the basis of the improvement of the process characteristics. On this topic,

quite elucidating is a whitepaper of the Gartner/EBRC KPI initiatice and the KPI list of

opsdog.com.

9. Other application-specific indicators which do not lie in any of the above categories

Indeed, notice that the question of assessing the performance of a plant is a multi-faceted

problem and cannot be examined solely from the perspective of closed-loop control. It is easily

understood that, for instance, the quality of the final product is in and of itself multi-parametric

and depends on the configuration of the control system, the mode of operation, the quality of

first materials, the quality of measurements and sensors and many another.

In particular, when it comes to evaluating the closed-loop performance of a process, the

following critical points need to be taken into consideration:

1. The tracking capability the control system, that is, how well the controller meets the

tracking requirements (if the control problem is a tracking problem)

2. The extent of satisfaction of the prescribed constraints, i.e., to what extent the process

is operated within the desired bounds

3. The economic performance of the operation, i.e., how much energy needs to be con-

sumed to properly operate the plant

4. The smoothness of the control actions — typically it is not desirable to operate the plant

in a bang-bang manner, i.e., with abrupt changes in the manipulated variables as this may

lead to the wear-out of the actuators

5. The smoothness of the system’s response — a controlled system needs to be respon-

sive (e.g., to changes in the set-points), yet abrupt changes need to be avoided

6. Frequency characteristics of the closed-loop system (when applicable)

7. Technical sustainability of the process, that is, under the current mode of operation is

the process expected to run smoothly, or it may lead to wear-outs and faulty operation (this

does not exclusively depend on the controller)

When at the stage of design, certain KPIs are associated with the feasibility of the proposed

control (or other) algorithmic solutions.

1. Technical feasibility: when at the stage of controller design, technical feasibility is of

great importance. What are the expected runtimes of the algorithms that are involved?

Can they run on cheap hardware and, in particular, on the hardware that is mounted and

used for that process? Can the algorithms run in finite-precision arithmetic if necessary?
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How critical is that all numerical algorithms converge? What are the theoretical guarantees

that the proposed closed-loop scheme will work adequately?

2. The resilience of the controlled system. What are the (extreme/adverse) scenarios that

have been taken into account and how will the closed-loop system behave under extreme

conditions?

In particular, regarding point 2, the designer is often tempted to assume that the process will

behave in a similar way to the model or with some reasonable deviation from that. In practice

this assumption may sometimes fail and extreme events may be encountered.

Finally, although not related to the controlled process directly, we should consider the relia-

bility of the process models in regard to which we have the following quality indicators

1. The predictive ability of the model which has been defined and quantified in an exten-

sive analysis in deliverable report D2.1 and

2. the foresight of the model, i.e., up to what time in the future it can be used to produce a

reliable prediction. Looking back into D2.1., the predictive ability of a model is a function

of a desired prediction horizon. Here, we ask up to what prediction horizon can the model

give predictions with reasonable error.

The above list has been compiled taking into account many resources, both from inside

DISIRE and outside of it. In particular, it is worth mentioning the sources we consulted

1. The industrial case studies of MEFOS, DCI and KGHM; the industrial partners of DISIRE

and the experience of IMTL, LTU, DAPP and ODYS

2. The experience of various EU research projects such as Direction (reports D1.1, D1.3,

D1.4, D1.6 and D1.7), http://effinet.eu (report D2.3), e-PRICE (report D1.2), ADVANCED

(report D1.2)

3. Scientific literature resources [1–7], the book “Performance Evaluation and Benchmarking

of Intelligent Systems” [8], the concepts of KPI-based fault diagnosis [9], and economic

MPC [10] which is, effectively, a KPI-based control approach on which our analysis in

report D2.1 was based.

4. A whitepaper by redlion on seven common industrial KPIs which we took into consideration

for our mathematical abstraction in Section 1.2.3.

The assessment and verification approach of DISIRE will be carried out through modelling

and simulation. It is therefore necessary that the proposed performance metrics be calculat-

ed/estimated in the corresponding modelling and simulation environment. As the current sub-

mission of this document is mid-term, some of the proposed performance indicators may be

modified or updated. We plan to update this document at M21 (following an internal review),

M28 and M32 (when will be the final submission). It is important to note that there is no single,

unique or “best” way to mathematically define KPIs. It is purely a matter of design choice and it,

after all, reflects the needs of every particular application.

1.2.2 Evaluation by simulations

The KPIs we present here are intented for both the application environment, where they mea-

sure the actual performance of the process, and for evaluation of the process in simulation. In

the first case their values reflect an actual and measured performance, whereas in simulations
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a mere projection of the system performance is possible. Therefore, estimated KPIs by simula-

tions are random numbers and the modelling uncertainty and other sources of noise need to be

accounted for. This means that one-shot simulations may not be indicative for the performance

a closed-loop scheme is likely to have. This can be remedied with two possible techinques: (i)

the use of a very long simulation horizon so that “unlikely” or “extreme” events (drawn from the

probability distributions of the uncertain parameters) may occur and influence the perfomance

evaluation and/or (ii) by running many closed-loop simulations using different (random) realisa-

tions of the underlying uncertainty, that is, in a sense, perform Monte-Carlo simulations. Here

we propose a combination of the two and from each such run a value is produced for every KPI.

Overall, we estimate therefore probability distributions of the KPIs and not just values.

1.2.3 Mathematical formulation

As already discussed, there is not a single way to mathematically formalise the above indicators.

Some KPIs have already been introduced in D2.1 for the processes of WP7 and WP8. Here,

we follow a more generic approach to KPIs and make a few observations: (i) KPIs are evalu-

ated having collected a sample of input/output data from the process. The length of this sample

determines the type of the KPI and its scope. This was already discussed in D2.1 where we

introduced what we call level-A and level-B KPIs; (ii) from this sample we need to extract a char-

acteristic value, which is typically an index of a statistical distribution. Two very natural choices

are the average and the maximum/minimum values of it, as well as some α-level average value

at risk. There are, however, other sensible choices as well.

Reciting D2.1: “We will distinguish between level-A and level-B KPIs. Level A KPIs will be

defined at a higher frequency resolution and will be used by the process operator to monitor the

instantaneous performance of the process,” and “level-B KPIs will be used to assess the overall

performance of the furnace throughout the course of the whole campaign.”

Hereafter we shall give examples of KPIs. In a stochastic framework, as discussed in Sec-

tion 1.2.2 a number of K simulations is produced each one of which produces a KPI (a scalar).

Them, the performance is evaluated using a statistical estimator ρ̂ of a mapping ρ from the

space of random variables to IR — for instance if ρ = E, then ρ̂K can be the arithmetic mean

because ρ̂K → ρ as K →∞.

First, we will provide some very generic formulas with which KPIs can be constructed from

a set of measurements {si}i=1,...,K , with si ∈ IRs. We associate with these measurements the

sequence {ςi}i=1,...,K with ςi = ‖si‖, where ‖ · ‖ is a vector norm. A KPI is then a mapping

KPI : IRs×K → IR. Here we will treat KPIs as costs, so lower values are always better. We

identify the following generic types of indicators

1. The average norm, which is defined as

‖{si}i‖av =
1

K

K∑
k=1

‖sk‖ (1.1)
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2. The root mean square, which is defined as

RMS({si}i) =

√√√√ 1

K

K∑
k=1

‖sk‖2 =

√√√√ 1

K

K∑
k=1

ς2k (1.2)

Often the RMS value is used as RMSE (root mean square error) and ss the term suggests,

that KPI is used to quantify errors such as tracking errors.

3. The percentage of incidence with respect to a condition A, that is

σ({si}i) =
1

Hs

Hs∑
k=1

ν(sk | A(sk)), (1.3)

where ν(sk | A(sk)) = 0 if A(sk) is false and ν(sk | A(sk)) = 1 otherwise.

4. The average value at risk of level α of the sequence {ςi}i
5. Any of the above applied to a distance-to-set sequence, that is

ŝi = dist(si | C) = inf
y∈C
‖y − si‖, (1.4)

and ŝi ≥ 0; for example, we can as a KPI the average, or AV@R of these norms

6. The maximum of one of the above sequences, i.e., either {ςi}i or {ŝi}i (or the minimum
when we intend to maximise the KPI).

Tracking error KPIs along a simulation horizon Hs is given by the root-mean-square error,

which essentially is a weighted 1-2-norm (sum of norms) of the total error, that is

KPItracking =

√√√√ 1

Hs

Hs∑
k=1

‖εk‖2, (1.5)

where εk is the tracking error at time k, that is

εk = zk − zspk , (1.6)

where zk is the part of the system output that we need to steer to a set-point and zspk is the

set-point at time k.

Assume that the constraints (xk, uk) ∈ C need to be imposed. Then, the constraints satis-

faction can be evaluated in various possible ways. First, counting the time instants when the

constraint is not satisfied, that is

KPIc/c =
1

Hs

Hs∑
k=1

ν(xk, uk | C), (1.7)

where

ν(xk, uk | Cc) =

0, if (xk, uk) ∈ C

1, if (xk, uk) /∈ C
(1.8)
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KPI (1.7) is useful when the extent of constraint violation is no more important than the violation it

self, typically when it is very likely to lead to break downs and absolutely no constraint violations

can be tolerated. KPIc/c gives the percentage of time instants when the constraints are violated,

but would return a very high value if the constraints are consistently and continuously violated

by an infinitesimally small amount and a very small return, if the constraints are rarely, but

considerably violated.

When, we need to quantify the extent and intensity of constraints violation we may use an

index such as the average or the AV@R or the maximum of the sequence

{dist((xk, uk) | C)}k=1,...,K . (1.9)

The smoothness of the operation of a process is estimated by the time-gradient of the ac-

tuation and response of the system. To the extent that all other KPIs are optimised or are kept

within desired bounds, the smoothness of operation will determine the best mode of closed-loop

operation. In certain cases, especially when the actuation is by valves or other moving mechan-

ical parts, the minimisation of the corresponding KPI is vital for the longevity of the actuators.

The gradient of {si}i will be denoted by {∇si}i where

∇si = si − si−1. (1.10)

We may then derive various KPIs on the sequence {∇si}i, or the sequence {‖∇si‖}i.
The original seven KPIs proposed by redlion are the following: (i) count (good or bad) which

is covered by the incidence class of KPIs presented in (1.3), (ii) the reject ratio KPI which is

a quality KPI and is of the same general type as (i), (iii) the production rate which can be

quantified as an average or AV@R of the measured production rate, or an average norm of

a production vector can be computed (when multiple products are produced from the same

process), (iv) target KPIs which are for KPIs similar to what set-points are for system outputs,

i.e., they are desired values. In the case of KPIs, these are typically minimum or maximum

desired values, (v) the takt time which is the amount of time for the completion of a task (e.g.,

the production of a product). In the process industry this is typically captured by the production

rate, however, it is quite indicative of the speed of process and helps identify slow processes

and bottlenecks, (vi) the overall equipment effectiveness is then used to quantify the utilisation

of resources of the equipment. In our context this can be quantified by a distance-to-set from

the system boundaries. Essentially, we ask the question: do we make the most out of the

system and — in particular — the limits on its variables? and (vii) the downtime of the process

which might be due to regular schedulled maintenance (which cannot be avoided with improved

control techniques) or due to unexpected faults (which can be avoided by a controller which is

“more gentle” with the actuators).
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1.2.4 Performance evaluation in the context of SMPC

The evaluation of performance in the context of SMPC naturally produces certain KPIs by look-

ing at the SMPC problem which was introduced in Chapter 3 of D2.1 which is written as

V ?(p, ŵk, k) = min
π

EV (π, p, k), (1.11)

where V is the total cost function along a prediction horizon N given by

V (π, p, k) =

N−1∑
j=0

`(xk+j|k, uk+j|k, k + j), (1.12)

subject to the system constraints, i.e., the system dynamical equations which are equality con-

straints, the system constraints on states and inputs which are inequality constraints and, pos-

sibly, input-disturbance couplings. The function ` naturally merges together various system

objectives such as economic (reduction of actuation energy, e.g., fuel), tracking accuracy, cost

terms on state or input derivatives to lead to a smooth operation, soft constraints and more. A

weight factor is assigned to each such sub-cost to produce the single cost function ` which best

reflects the operation objectives. This choice induces a KPI which can be

KPIsmpc = ρ̂K({`(xk, uk, k)}k=1,...,K), (1.13)

where ρ̂K is a statistical estimator as discussed in Section 1.2.3, for example

KPIsmpc,av =
1

K

K∑
k=1

`(xk, uk, k), (1.14)

or

KPIsmpc,AV@Rα = inf
t∈IR

{
t+

1

αN

K∑
k=1

[`(xk, uk, k)− t]+

}
, (1.15)

which is an estimator of the average value at risk with confidence level α and can be computed

by a linear programming solver.

Another metric is related to the evaluation of the complexity of the SMPC problem. SMPC

problems can be rather complex, especially as the number of scenarios can give rise to prob-

lems with millions of variables. We ask whether the chosen complexity is reasonable? Essen-

tially, the question we address is how many scenarios should we take into account so as to have

a reliable representation of the uncertainty’s PDF that is suitable for closed-loop simulations.

Maggioni and Pflug provide a rigorous answer to this question in [11]; in brief, as more scenar-

ios are introduced into the problem or, in general, as the filtration becomes finer, say F ⊆ F′, the

respective value functions increase:

V ?(p, ŵk, k;F) ≤ V ?(p, ŵk, k;F
′), (1.16)

and the required computational time increases accordingly. This property is known as informa-
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Large increase in runtime

Little gain
In robustness

Good gain
In robustness

Reasonable increase 
in runtime

Figure 1.1: Total cost V ?(p, ŵk, k;F) vs runtime for various (increasing) number of constraints.

tion monotonicity.

This is illustrated in Figure 1.1: finer filtrations incur an increased computational cost, but also

offers an improvement in the total cost, i.e., every instance of the SMPC problem will produce

a sequence of control functions which will lead to lower expected cost. The desired balance

between optimality and performance needs then to be decided by the designer and taking into

account the available sampling time and the computational capabilities that are available.
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Chapter 2

Case Study: Walking Beam furnace

2.1 Quality of data

The data collected from the WBF are of rather high quality with no missing values and a high

sampling rate (1s) which allows us to perform filtering and obtain very accurate measurements.

There are so far no calibration data, so we cannot know whether there are biases in the mea-

surements. From the data we have received, we cannot deduce anything about the down-

time/uptime of the process.

2.2 Closed-loop performance

2.2.1 Economic performance

The economic operation of the furnace will be evaluated by the consumption of fuel for the

combustion at the three zones.

KPI note value
KPI1f,av Average fuel consumption at Z1 12.037 kg/h
KPI2f,av Average fuel consumption at Z2 9.2570 kg/h
KPI3f,av Average fuel consumption at Z3 53.391 kg/h
KPI1fr,av Average fuel rate at Z1 32.256 kg/h
KPI1fr,av Average fuel rate at Z2 24.266 kg/h
KPI1fr,av Average fuel rate at Z3 27.155 kg/h

Table 2.1: KPIs for the economic operation of the furnace.

2.2.2 Tracking capability

The current control system seems to obtain in general good tracking, but, it can be seen, there

are certain time instants where the tracking error too high (about ±50◦C).
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KPI note value
KPItr tracking RMSE 9.70 ◦C
KPI1tr,max Maximum tracking error, Z1 31.2 ◦C
KPI2tr,max Maximum tracking error, Z2 44.5 ◦C
KPI3tr,max Maximum tracking error, Z3 51.6 ◦C
nKPItr tracking RMSE considering only nonzero errors 15.3 ◦C
nKPIa Average norm of tracking error – only nonzero errors 11.1 ◦C
nKPIq,95% Quantile-95% of tracking error – only nonzero errors 34.6 ◦C
nKPIq,97.5% Quantile-97.5% of tracking error – only nonzero errors 41.5 ◦C
Active control Time during which the controller was active 30.16 h
Total time Total duration of the campaign 310.48 h

Table 2.2: KPIs determined from Hs = 111773 filtered data points.

2.2.3 Smoothness of operation

The smoothness of the operation of the furnace is quantified using the time-gradient of the con-

trol actions and the responsiveness of the temperatures at its three zones. We will investigate

whether we can obtain a better tracking result at an improved smoothness, or at least a not too

higher smoothness. Currently, we do not have an indication about whether there should be an

upper bound on the gradient of the actuation.

KPI note value
KPI1∇oil Mean absolute oil rate gradient, Z1 46.1 kg/h2

KPI2∇oil Mean absolute oil rate gradient, Z2 46.4 kg/h2

KPI3∇oil Mean absolute oil rate gradient, Z3 47.9 kg/h2

KPI∇oil Mean absolute oil rate gradient 321.61 kg/h2

Table 2.3: KPIs for the smoothness of control actions and the responsiveness of the furnace
taking into account the 31.2 hours of operation when there was fuel flow higher than 10kg/h in
zones 1 and 3 and higher than 3kg/h in zone 2.

2.2.4 Process quality characteristics

The quality of the process, that is the quality of the combustion is assessed by the excess of

Oxygen in each zone. As discussed in D2.1, the availability of Oxygen determines the efficiency

of the combustion and it is generally desired to have full combustion under adequate excess of

Oxygen. Notice that here, unlike other KPIs reported above, the KPIs reported here need to be

maximised.

The quality of combustion, from the data which we have gathered, is judged to be ade-

quate and it is rare that the furnace runs out of Oxygen at any of its zones. This is illustrate in

Figure 2.1, but it can also be seen in Table 2.4. Indeed, in a mere 0.0329% of time does the

concentration of Oxygen drop under the value of 1.5% and it is even more rare (0.0024%, 0.01%

and 0.0017% for the three zones respectively) for the excess of Oxygen to drop under the critical

value of 1% when the combustion is inadequate.
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Figure 2.1: Histogram of the excess of Oxygen for the zones of the WBF. Notice that most of
the time, the Oxygen concentration is retained above the critical value of 1.5%. The “outliers” at
around 20% occur when there is no combustion.
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KPI note value
KPI1O2,cl

Incidence of low oxygen (< 1.5%), Z1 0.0045%
KPI2O2,cl

Incidence of low oxygen (< 1.5%), Z2 0.0220%
KPI3O2,cl

Incidence of low oxygen (< 1.5%), Z3 0.0329%
KPI1O2,min Minimum oxygen, Z1 0.095%
KPI2O2,min Minimum oxygen, Z2 0.008%
KPI3O2,min Minimum oxygen, Z3 0.010%
KPI1O2,av Average Oxygen, Z1 13.92%
KPI2O2,av Average Oxygen, Z2 13.44%
KPI3O2,av Average Oxygen, Z3 12.03%
KPI1suff,av Average duration of suffocation period (< 1.0%), Z1 5.57min
KPI2suff,av Average duration of suffocation period (< 1.0%), Z2 10.17min
KPI3suff,av Average duration of suffocation period (< 1.0%), Z3 10.0h
KPI1suff,max Max. duration of suffocation period (< 1.0%), Z1 11.2min
KPI2suff,max Max. duration of suffocation period (< 1.0%), Z2 42.0min
KPI3suff,max Max. duration of suffocation period (< 1.0%), Z3 13.7min

Table 2.4: KPIs for the smoothness of control actions and the responsiveness of the furnace
taking into account the 31.2 hours of operation when there was fuel flow higher than 10kg/h in
zones 1 and 3 and higher than 3kg/h in zone 2.
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Chapter 3

Conclusions and planned work

During this first phase of the project (≤M18) we have introduced a complete mathematical

framework with which we may assess the performance of a controlled system in simulation

taking into account the modelling uncertainty. The uncertainty of the system models has been

reported in D2.1, while here we focus on the assessment of the controlled plant in closed-loop

with the proposed stochastic MPC controllers.

The next steps are to use the proposed framework to compute all the KPI values (along with

an estimation of their uncertainty as discussed) for the proposed controllers and assess the

expected performance and benefit of implementing the proposed technology. Those KPI values

will be compared with the currently implemented “baseline” solutions. This will clearly assist in

a cost-benefit analysis.

The contribution of all partners to the making of this report is analysed in Table 3.1.

Partner Contribution
IMTL IMTL performed a literature review regarding KPIs currently in use in

industrial applications and proposed a taxonomy of KPIs in Chapter 1.
LTU LTU assisted IMTL in the mathematical formulation of the KPIs reported

in this report.
MEFOS MEFOS proposed KPIs related to the economics of the walking beam

furnace.
G-Stat G-Stat proposed indicators of computational feasibility.

ODYS ODYS reviewed this report.

Table 3.1: Contributions of DISIRE partners to report D2.3 (up to month 18).
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