1. **Energy to preheat manganese ores for the production of Mn ferroalloys**

 The PreMa project investigates the use of solar thermal energy for industrial processes, with a focus on preheating Mn ores. This approach aims to reduce carbon emissions and make the production of Mn ferroalloys more sustainable and efficient.

 Quantifying the resource efficiency afforded by the new pretreatment concept

 The project not only reduces CO2 emissions but also facilitates the efficient use of alternative energy sources and reduces fossil carbon consumption.

 Demos:

 Demonstrations of the PreMa pretreatment approach will be showcased at various test and demonstration sites. The technologies will be tested and demonstrated in real environments to assess their effectiveness and sustainability.

 Capturing the right option: PreMa project in search for the most promising technologies

 The project will identify and select the most suitable technologies for Mn ore pretreatment, ensuring the efficient and sustainable production of Mn ferroalloys.

 Getting to know Mn ores: a challenging task

 Due to their complex nature, characteristics of Mn ores pose a significant challenge for the selection of appropriate pretreatment technologies. The project will undertake basic engineering of pilot facility in Murdock Constantia, South Africa, to study Mn ores in real environments.

 Basic engineering of pilot facility inıyorum

 The project will conduct basic engineering of a pilot facility in Murdock Constantia, South Africa, to assess the feasibility of implementing the selected pretreatment technologies.

Meetings and events

- **Save the date:** 3rd Managenese School Workshop, 2023
- **PreMa project consortium**
- **PreMa project focus**
- **Exploitation manager’s corner**
- **Editorial**
- **PreMa's pretreatment approach**
- **Quantifying the resource efficiency afforded by the new pretreatment concept**
- **Demos:**
 - The project will demonstrate the integration of solar thermal systems with existing SAF technology, aiming to reduce CO2 emissions by 15% and fossil carbon consumption by 20%.
 - The project will focus on finding the right technology and solution for Mn ore pretreatment, considering the application focus and ambition to make production more resource and energy efficient.
- **To be updated...**
 - Encouraging the reader to follow PreMa on social media and sign up for our newsletter.

About PreMa

- **Project acronym:** PreMa
- **Project website:** www.prema-project.eu
- **Project duration:** 48 months
- **Project start date:** 01/10/2018
- **Coordinator:** Eli Ringdalen
- **News from the test and demo sites**
 - **Announcement of the Managenese School Workshop, 2023**
 - **PreMa project consortium**
 - **PreMa project focus**
 - **Exploitation manager’s corner**
 - **Editorial**
 - **PreMa's pretreatment approach**
 - **Quantifying the resource efficiency afforded by the new pretreatment concept**
 - **Demos:**
 - The project will demonstrate the integration of solar thermal systems with existing SAF technology, aiming to reduce CO2 emissions by 15% and fossil carbon consumption by 20%.
 - The project will focus on finding the right technology and solution for Mn ore pretreatment, considering the application focus and ambition to make production more resource and energy efficient.
- **To be updated...**
 - Encouraging the reader to follow PreMa on social media and sign up for our newsletter.

Contact Person:

- **Izabela Ratman-Kłosińska**
 - Phone: +48 32 254 60 31 ext. 243
 - E-mail: i.ratman-klosinska@ietu.pl
 - M. Korcz
 - Phone: +48 32 254 60 31 ext. 269
 - E-mail: m.korcz@ietu.pl

This project has received funding from the European Union’s Horizon 2020 Research and Innovation Programme.