Optimise electricity sourcing and use via demand-response (flexibility) in industry clusters.

Reduce and balance industrial power demand by joining a virtual power plant.

Key Insights
- **Optimise power use**
- **Secure power supply**
- **Integrate sites & clusters**
- **Enable renewable energy**

Balancing the Grid

<table>
<thead>
<tr>
<th>Energy Source</th>
<th>Use per Sector</th>
<th>Flexibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cement</td>
<td>100-150 kWh/ton mineral</td>
<td>10-30% (crushing and grinding)</td>
</tr>
<tr>
<td>Minerals</td>
<td>80-100 kWh/ton crude oil</td>
<td>30-45% (cooling tower, pumping unit, oil separation)</td>
</tr>
<tr>
<td>Chemicals</td>
<td>300-700 kWh/ton steel</td>
<td>15-30% (electric arc furnace steelmaking)</td>
</tr>
</tbody>
</table>

Cross-Sector Collaboration

Process industries have a realistic potential to provide flexibility to the grid.

Electricity-intensive industries have a growing demand for security of power supply.

Sustainability Impact

Wins for industry
- for suppliers: reduction of power instability
- for industry: 5-10% electricity cost savings

Environmental gains
- renewable energy enabled: 10-45% lower peak power demand

Wins for society
- security of power supply (blackout avoidance)
- improved business relations in regional clusters
- job creation and new skills development

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 679386. This work was supported by the Swiss State Secretariat for Education, Research and Innovation (SERI) under contract number 15.0217.
REFERENCES

