

Technische Universiteit
Eindhoven
University of Technology

OXIDATIVE COUPLING OF METHANE: A COMPARISON OF DIFFERENT REACTOR CONFIGURATIONS

A. Cruellas, T. Melchiori, F. Gallucci, M. van Sint Annaland

Eindhoven University of Technology, Department of Chemical Engineering and Chemistry, Eindhoven, The Netherlands.

Introduction

The oxidative coupling of methane (OCM) is a direct route for the production of hydrocarbons (C₂₊) from methane.

 $2CH_4 + O_2 \rightarrow C_2H_4 + 2H_2O \qquad \Delta H < 0$

The OCM yield is hampered by the parallel oxidation reactions, and at least a 30% C₂₊ yield is needed to make the process economically viable.

Experimental and results

- A phenomenological 1D model has been developed to simulate the most common reactor configurations.
- The La₂O₃/CaO catalyst has been chosen as the OCM catalyst. The inlet temperature was set to 800 °C and the pressure to 2 bar.

A.Cruellas.Labella@tue.nl F.Gallucci@tue.nl

Packed bed reactor

The heat management control becomes easier with the use of a fluidized bed reactor

Fluidized bed reactor

Figure 2. OCM performance for different CH₄/O₂ ratios with a <u>fluidized bed reactor</u> configurations.

Reactor configuration	Maximum C ₂₊ yield (%)	(*) Without taking into account the hotspot problem
PB reactor	14 (*)	
FB reactor	9,9	
PB membrane reactor	60	
FB membrane reactor	54,9	

The poor OCM performance obtained with the fluidized bed hinders its application.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 z (m)

Figure 3. OCM performance along the axial length of a packed bed membrane reactor.

Figure 4. Maximum C₂₊ yield achieved with the different reactor configurations for the OCM process.

The O₂ membranes:

- Keeps a low Po₂, favouring the desired reactions and increasing the yield
- Distributes the reaction and the heat released along the axial reactor length

Conclusions

- The yield obtained with conventional configurations (packed and fluidized bed) is not enough to make the process economically viable.
- The introduction of oxygen membranes can solve the problem of the heat management and can widely increase the performance of the process.

Acknowledgements: This project, MEMERE, has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 679933