The research project receives funding from the European Community’s Framework Programme for Research and Innovation Horizon 2020 (2014-2020) under grant agreement no. 637077.

About the Project
- **Start date:** 1st January 2015
- **Duration:** 48 Months, until 31st December 2018
- **Budget:** 14 million €
- **Project website:** www.spire2030.eu/prodias/

PRODIA CONSORTIUM

Energy reduction

<table>
<thead>
<tr>
<th>2015</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demo plant separator & pilot trials</td>
<td>Separateability / Solids handling</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Separability/Solids handling

- **Reduce power losses**
 Loss of rotational momentum is an issue encountered with conventional outlet devices at a finite radius. By use of centre-to-centre design, these losses are reduced.

- **Reduce pressure losses**
 Internal pressure drop generates substantial pressure losses when increasing the flowrate. These are reduced by using novel inlet design.

Demo plant separator

- **Versatile and scalable**
 A demo separator unit incorporating the novel features is designed for tests with fermentation broth. The unit is versatile comprising several variants and is scalable to larger sizes.

Cell removal from fermentation broth using centrifugal separation

Alfa Laval Tumba AB: S Szepessy, C Thorsson, P Thorwid, C Hägmark, S Königsson, O Törnblom. **BASF SE:** T Merkel

Energy reduction by 50%

- **Reduce air friction**
 The rotor has high peripheral speed exceeding 200 m/s. Air friction causes considerable power losses and heat generation. Both can be reduced by applying vacuum outside the rotor.

- **Reduce pressure losses**
 The rotor has high peripheral speed exceeding 200 m/s. Air friction causes considerable power losses and heat generation. Both can be reduced by applying vacuum outside the rotor.